Acompanhamento da microbiota indicadora e patogênica durante a vida útil de Longissimus dorsi (contrafilé) embalado a vácuo

Autores

DOI:

https://doi.org/10.5433/1679-0359.2023v44n6p2179

Palavras-chave:

Carne bovina resfriada, Conservação, Qualidade microbiológica, Vida útil.

Resumo

O Brasil é um dos maiores produtores de carne do mundo. Tendo em vista essa grande produtividade e a preocupação com a qualidade da carne produzida, os estabelecimentos produtores estão buscando meios para maior conservação do produto, sendo a embalagem a vácuo um dos mais utilizados. O objetivo do trabalho foi acompanhar a microbiota indicadora e patogênica durante a shelf life de Longissimus dorsi bovino embalado a vácuo. Foram avaliadas amostras de contrafilé coletadas e acondicionadas na seção de desossa de um frigorífico sob inspeção federal. Cada amostra foi fracionada em quatro peças e cada peça foi utilizada para compor uma parte de cada um dos pools, sendo totalizado quatro pools mantidos à 7ºC e analisados de 0 até os 60 dias de embalagem primária, com intervalo de 20 dias. Foram quantificados aeróbios mesófilos, psicrotróficos, enterobactérias, coliformes a 30°C, Escherichia coli e Staphylococcus spp. Através de abordagens moleculares foram caracterizados os patótipos de E. coli produtora da toxina shiga (STEC), enteropatogênica (EPEC), enterohemorrágica (EHEC), enteroagregativa (EAEC), enterotoxigênica (ETEC) e enteroinvasiva (EIEC), Pseudomonas spp. entre os psicrotróficos, Salmonella spp. e Listeria monocytogenes. As quantificações dos micro-organismos indicadores foram aumentando progressivamente a cada intervalo de análise, com destaque para os psicrotróficos que aumentaram de 5 x 101 no dia 0 para 4,2 x 108 UFC/g no dia 60, predominando Pseudomonas spp. (48%). As contagens que possuem padrão determinado por legislações vigentes tiveram seus limites ultrapassados, como E. coli, desde o dia 20 (7 x 102 UFC/g). Foram identificadas EPEC, ETEC, STEC e EIEC, além de L. monocytogenes em todas as análises e Salmonella spp., essa última só não detectada no primeiro dia de shelf life. Fazem-se necessárias, portanto, revisões nos planos de autocontrole assim como maior rigor microbiológico na produção e processamento da carne bovina para melhoria da shelf life do produto e aumento da sua segurança.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jeycy Kelle Sirqueira Mendonça, Universidade Federal do Norte do Tocantins

Profa. Dra., Laboratório de Microbiologia de Alimentos, Centro de Ciências Agrárias, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Fernando Loiola Nunes, Universidade Federal do Norte do Tocantins

Prof. Dr., Laboratório de Microbiologia de Alimentos, Centro de Ciências Agrárias, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Carolina Merlin Meurer, Universidade Federal do Norte do Tocantins

Profa. Dra., Laboratório de Microbiologia de Alimentos, Centro de Ciências Agrárias, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

José Carlos Ribeiro Júnior, Universidade Federal do Norte do Tocantins

Prof. Dr., Laboratório de Microbiologia de Alimentos, Centro de Ciências Agrárias, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Ana Paula Neves Correia, Universidade Federal do Norte do Tocantins

Profa. Dra., Laboratório de Microbiologia de Alimentos, Centro de Ciências Agrárias, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal do Norte do Tocantins, UFNT, Araguaína, TO, Brasil.

Referências

Agência Nacional de Vigilância Sanitária (2022). Instrução Normativa n° 161 de 01 de julho de 2022. Estabelece as listas de padrões microbiológicos para alimentos. Diário Oficial [da] República Federativa do Brasil, 126(1).

Alnajrani, M., Hanlon, K., English, A., Fermin, K., Brashears, M. M., & Echeverry, A. (2018). Comparing the recovery of indicator microorganisms from beef trimmings using swabbing, rinsing, and grinding methodologies. Meat and Muscle Biology, 2(1), 154-161. doi: 10.22175/mmb2017.09.0047 DOI: https://doi.org/10.22175/mmb.9059

Aranda, K. R. S., Fagundes, U., Neto, & Scaletsky, I. C. A. (2004). Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic Escherichia coli and Shigella spp. Journal of Clinical Microbiology, 42(12), 5849-5853. doi: 10.1128/jcm.42.12.5849-5853.2004 DOI: https://doi.org/10.1128/JCM.42.12.5849-5853.2004

Associação Brasileira das Indústrias Exportadoras de Carnes (2023). Beef report: perfil da pecuária no Brasil. https://www.abiec.com.br/exportacoes/

Autoridade de Segurança Alimentar e Econômica (2023). Salmonella. https://www.asae.gov.pt/seguranca-alimentar/riscos-biologicos/salmonella.aspx

Bezerra, W. I., & Martins, T. D. D. (2008). Análise dos pontos críticos em uma unidade frigorífica de abate de suínos em Igarassu-PE. Anais da Jornada Nacional da Agroindústria, João Pessoa, Paraíba, Brasil, 3.

Bomar, M. T. (1985). Rapid method for the determination of bacterial surface contamination in carcasses. Alimenta, 24(3), 55-57.

Bucher, O., D’Aoust, J. Y., & Holley, R. A. (2008). Thermal resistance of Salmonella serovars isolated from raw, frozen Chicken nuggets/strips, nugget meat and pelleted broiler feed. International Journal of Food Microbiology, 124(2), 195-198. doi: 10.1016/j.ijfoodmicro.2008.03.002 DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.03.002

Carhuallanqui-Pérez, A. (2020). Evaluación del efecto combinado bactericida del aceite esencial del ajo (Allium sativum) y orégano (Origanum vulgare) sobre Listeria monocytogenes (ATCC) y Staphylococcus aureus (ATCC) em carne de res empacada al vacío y almacenada em refrigeración (4°C). Dissertação de Mestrado, Universidad Nacional Mayor de San Marcos, Lima, Portugal.

Carrasco, E., Morales-Rueda, A., & Garcia-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: a review. Food Research International, 45(2), 545-556. doi: 10.1016/j.foodres 2011.11.004 DOI: https://doi.org/10.1016/j.foodres.2011.11.004

Castro, V. S., Carvalho, R. C. T., Conte, C. A., Jr., & Figuiredo, E. E. S. (2017). Shiga‐toxin producing Escherichia coli: pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1269-1280. doi: 10.1111/1541-4337.12302 DOI: https://doi.org/10.1111/1541-4337.12302

Cevallos-Almeida, M., Burgos-Mayorga, A., Gómez, C. A., Lema-Hurtado, J. L., Lema, L., Calvache, I., Jaramillo, C., Ruilova, I. C., Martínez, E. P., & Estupiñán, P. (2021). Association between animal welfare indicators and microbiological quality of beef carcasses, including Salmonella spp., from a slaughterhouse in Ecuador. Veterinary World, 14(4), 918-925. doi: 10.14202%2Fvetworld.2021.918-925 DOI: https://doi.org/10.14202/vetworld.2021.918-925

Chen, Y., & Knabel, S. J. (2007). Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Applied and Environmental Microbiology, 73(19), 6299-6304. doi: 10.1128/AEM.00961-07 DOI: https://doi.org/10.1128/AEM.00961-07

Chen, Y., Ma, F., Wu, Y., Tan, S., Niu, A., Qiu, W., & Wang, G. (2023). Biosurfactant from Pseudomonas fragi enhances the competitive advantage of Pseudomonas but reduces the overall spoilage ability of the microbial community in chilled meat. Food Microbiology, 115, 104311. doi: 10.1016/j.fm.2023.104311 DOI: https://doi.org/10.1016/j.fm.2023.104311

Cipriano, L. C., Sousa, L. B., Siqueira, H. P. G., Lima, E. F., Messias, C. T., Marchi, P. G. F., Medeiros, E. S., Hoppe, I. B. A. L., & Siquera, A. B. (2021). Vida útil de carne bovina moída comercializada no município de Boa vista - Roraima. Research, Society and Development, 10(2), 1-12. doi: 10.33448/rsd-v10i2.12282 DOI: https://doi.org/10.33448/rsd-v10i2.12282

Costa, G, M., Pereira, U. P., Custodio, D. A. C., & Silva, N. (2011). Caracterização de Staphylococcus coagulase-positiva utilizando plasmas de diferentes espécies animais. Revista do Instituto Adolfo Lutz, 70(4), 584-588. DOI: https://doi.org/10.53393/rial.2011.v70.32518

Djordjević, J., Boskovi, M., StarcevI, M., Ivanovic, J., Karabasil, N., Dimitrijevic, M., Lazic, I. B., & Baltic, M. Z. (2018). Survival of Salmonella spp. in ground meat packed in vacum and modified atmosphere. Brazilian Journal of Microbiology, 49(3), 607-613. doi: 10.1016/j.bjm.2017.09.009 DOI: https://doi.org/10.1016/j.bjm.2017.09.009

Enciso-Martínez, Y., González-Aguilar, G. A., Martínez-Téllez, M. A., González-Pérez, C. J., Valencia-Rivera, D. E., Barrios-Villa, E., & Ayala-Zavala, J. F. (2022). Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. International Journal of Food Microbiology, 374(2), 109736. doi: 10.1016/j.ijfoodmicro.2022.109736 DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109736

Ercolini, D., Russo, F., Nasi, A., Ferranti, P., & Villani, F. (2009). Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Applied and Environmental Microbiology, 75(7), 1990-2001. doi: 10.1128/AEM.02762-08 DOI: https://doi.org/10.1128/AEM.02762-08

Ferreira, R. C. (2019). Avaliação da qualidade microbiológica do presunto cozido fatiado e das condições higiênico-sanitárias do ambiente industrial. Dissertação de mestrado, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

Filipello, V., Mughini-Gras, L., Gallina, S., Vitale, N., Mannelli, A., Pontello, M., Decastelli, L., Allard, M. W., Brown, E. W., & Lomonaco, S. (2020). Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy. Food Microbiology, 89, 103433. doi: 10.1016/j.fm.2020.103433 DOI: https://doi.org/10.1016/j.fm.2020.103433

Frank, J. F., & Yousef, A. E. (2004) Test for groups of microrganisms. In H. M. Wehr, & J. K. Frank (Eds.), Standard methods for the examination of dairy products (Chapter 8, pp. 239-242). Washington: American Public Health Association.

Franzetti, L., & Scarpellini, M. (2007). Characterisation of Pseudomonas spp. isolated from foods. Annals of Microbiology, 57(1), 39-47. doi: 10.1007/BF03175048 DOI: https://doi.org/10.1007/BF03175048

Furlanetto, K. H. (2020). Avaliação da vida de prateleira e da qualidade de amostras de carne bovina resfriada embaladas à vácuo pelo período de 120 dias. Dissertação de mestrado, Universidade Tecnológica Federal do Paraná, Londrina, PR, Brasil. DOI: https://doi.org/10.34117/bjdv6n7-840

Gowda, T. K., Zutter, L. de, Van Royen, G., & Van Damme, I. (2022). Exploring the microbiological quality and safety of dry-aged beef: a cross-sectional study of loin surfaces during ripening and dry-aged beef steaks from commercial meat companies in Belgium. Food Microbiology, 102, 103919. doi: 10.1016/j.fm.2021.103919 DOI: https://doi.org/10.1016/j.fm.2021.103919

He, Y., Wang, J., Zhang, R., Chen, L., Zhang, H., Qi, X., & Chen, J. (2023). Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Frontiers in Public Health, 11, 1127925. doi: 10.3389/fpubh.2023.1127925 DOI: https://doi.org/10.3389/fpubh.2023.1127925

Hervert, C. J., Alles, A. S., Martin, N. H., Boor, K. J., & Wiedmann, M. (2016). Evaluation of different methods to detect microbial hygiene indicators relevant in the dairy industry. Journal Dairy Science, 99(9), 7033-7042. doi: 10.3168/jds.2016-11074 DOI: https://doi.org/10.3168/jds.2016-11074

Hugas, M., Pagés, F., Garriga, M., & Monfort, J. M. (1998). Application of the bacteriocinogenic Lactobacillus sakei CTC 494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiology, 15, 639-650. doi: 10.1006/fmic.1998.0208 DOI: https://doi.org/10.1006/fmic.1998.0208

Instituto Brasileiro de Geografia e Estatística (2023). Rebanho de bovinos (bois e vacas). https://www.ibge.gov.br/explica/producao-agropecuaria/bovinos/br

International Commission on Microbiological Specifications for Foods (1986a). Microorganisms in foods.2. Sampling for microbiological analysis: principles and specific applications (2nd ed.).

International Committee of Microbiological Specification for Foods Meat and Meat Products (ICMSF). (1986b). In ICMSF microbiological ecology of food (vol. 2.). Food Commodities Academic Press.

International Organization for Standardization 11290-1 (2004). Microbiology of food and animal feeding stuffs - horizontal method for the detection and enumeration of Listeria monocytogenes e Part 1: detection method. ISO 1996.

International Organization for Standardization 6579 (2005). Microbiology of food and animal feeding stuffs - horizontal method for detection of Salmonella spp. (4nd ed.). ISO.

International Organization for Standardization 6888-1 (1999). Microbiology of food and animal feeding stuffs - horizontal method for the enumeration of coagulase‐positive Staphylococci (Staphylococcus aureus and Other Species) - Part 1: Technique using Baird-Parker agar médium. ISO.

Jenkins, C., Dallman, T. J., & Grant, K. A. (2019). Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157: H7, England, 2013 to 2017. Eurosurveillance, 24(4), 1800346. doi: 10.2807/1560-7917.ES.2019.24.4.1800346 DOI: https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800346

Jibo, G. G., Raji, Y. E., Salawudeen, A., Amin-Nordin, S., Mansor, R., & Jamaluddin, T. Z. M. T. (2022). A systematic review and meta-analysis of the prevalence of Listeria monocytogenes in South-East Asia; a one-health approach of human-animal-food-environment. One Health, 15, 100417. doi: 10.1016/j.onehlt.2022.100417 DOI: https://doi.org/10.1016/j.onehlt.2022.100417

Marquezini, M. G., Orlando, E. A., Yotsuyanagi, S. E., & Bromberg, R. (2016). Analysys of vacum packed beef regarding psychrotrophuc bactéria growth na biogenic amines contente. Procedia Food Science, 7, 141-144. doi: 10.1016/j.profoo.2016.06.001 DOI: https://doi.org/10.1016/j.profoo.2016.06.001

McMillin, K. W. (2008). Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Science, 80(1), 43-65. doi: 10.1016/j.meatsci.2008.05.028 DOI: https://doi.org/10.1016/j.meatsci.2008.05.028

Mendonça, B. S., & Silva, C. S. (2012). Qualidade microbiológica da carne moída comercializada na cidade Cariacica, ES. Higiene Alimentar, 26(208/209), 101-105.

Miliotis, M. D., & Bier, J. W. (2003). International handbook of foodborne pathogens. Marcel Dekker. DOI: https://doi.org/10.1201/9780203912065

Mills, J., Donnison, A., & Brightwell, G. (2014). Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: a review. Meat Science, 98(1), 71-80. doi: 10.1016/j.meatsci.2014.05.002 DOI: https://doi.org/10.1016/j.meatsci.2014.05.002

Ministério da Agricultura, Pecuária e Abastecimento (2018). Instrução Normativa nº 60 de 20 de dezembro de 2018. Estabelece o controle microbiológico em carcaça de suínos e em carcaça e carne de bovinos em abatedouros frigoríficos. Diário Oficial [da] República Federativa do Brasil, 246(1), 4.

Miya, S., Takahashi, H., Hashimoto, M., Nakazawa, M., Kuda, T., Koiso, H., & Kimura, B. (2014). Development of a controlling method for Escherichia coli O157: H7 and Salmonella spp in fresh market beef by using polylysine and modified atmosphere packaging. Food Control, 37, 62-67. doi: 10.1016/j.foodcont.2013.09.028 DOI: https://doi.org/10.1016/j.foodcont.2013.09.028

Mladenović, K. G., Grujović, M. Ž., Kiš, M., Furmeg, S., Tkalec, V. J., Stefanović, O. D., & Kocić-Tanackov, S. D. (2021). Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied Microbiology and Biotechnology, 105, 8615-8627. doi: 10.1007/s00253-021-11655-7 DOI: https://doi.org/10.1007/s00253-021-11655-7

Monsón, F., Sañudo, C., & Sierra, I. (2005). Influence of breed and ageing time on the sensory meat quality and consumer acceptability in intensively reared beef. Meat Science, 71(3), 471-479. doi: 10.1016/j.meatsci.2005.04.026 DOI: https://doi.org/10.1016/j.meatsci.2005.04.026

Nethra, P. V., Sunooj, K. V., Aaliya, B., Navaf, M., Akhila, P. P., Sudheesh, C., Mir, S. A., Shijin, A., & George, J. (2023). Critical factors affecting the shelf life of packaged fresh red meat-a review. Measurement: Food, 10(1), 100086. doi: 10.1016/j.meafoo.2023.100086 DOI: https://doi.org/10.1016/j.meafoo.2023.100086

Redondo-Solano, M., Guzmán-Saborío, P., Ramírez-Chavarría, F., Chaves-Ulate, C., Araya-Quesada, Y., & Araya-Morice, A. (2020). Effect of the type of packaging on the shelf life of ground rabbit meat. Food Science and Technology International, 28(2), 190-199. doi: 10.1177/10820132211003705 DOI: https://doi.org/10.1177/10820132211003705

Ribeiro, J. C., Jr., Oliveira, A. M. de, Silva, F. D. G., Tamanini, R., Oliveira, A. L. M. de, & Beloti, V. (2018). The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75-83. doi: 10.3168/jds.2017-13069 DOI: https://doi.org/10.3168/jds.2017-13069

Ribeiro, J. C., Jr., Santos, I. G. C., Dias, B. P., Nascimento, C. A., & Lobo, C. M. O. (2021). Qualidade e segurança microbiológica de Longissimus Dorsi in natura e evolução das contagens de aeróbios mesófilos e psicrotróficos de ao longo de 30 dias de maturação a seco (dry-aged). Brazilian Journal of Development, 7(4), 39347-39361. doi: 10.34117/bjdv7n4-409 DOI: https://doi.org/10.34117/bjdv7n4-409

Ribeiro, J. C., Jr., Silva, F. F., Lima, J. B. A., Ossugui, E. H., Teinder, P. I., Jr., Campos, A. C. L. P., Navarro, A., Tamanini, R., Ribeiro, J., Alfieri, A. A., & Beloti, V. (2019). Short communication: molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. Journal of Dairy Science, 102(12), 10850-10854. doi: 10.3168/jds.2019-16732 DOI: https://doi.org/10.3168/jds.2019-16732

Ribeiro, J. C., Jr., Tamanini, R., Soares, B. F., Oliveira, A. M., Silva, F. G., Silva, F. F., Augusto, N. A., & Beloti, V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina: Ciências Agrárias, 7(5), 3069-3078. doi: 10.5433/1679-0359.2016v37n5p3069 DOI: https://doi.org/10.5433/1679-0359.2016v37n5p3069

Sagawa, R., Rodrigues, Y. M., Nascimento, C. A., Ribeiro, J., Silva Oliveira, M. da, Conti, A. C. M., & Ribeiro, J. C., Jr. (2022). Impact of the pre-slaughter period on the contamination of bovine leather and the operational sanitary procedure for skinning on the quality and microbiological safety of the carcass. Semina: Ciências Agrarias, 43(4), 1835-1848. doi: 10.5433/1679-0359.2022v43n4p1835 DOI: https://doi.org/10.5433/1679-0359.2022v43n4p1835

Saraiva, C., Fontes, M. D. C., Patarata, L., Martins, C., Cadavez, V., & Gonzales-Barron, U. (2016). Modelling the kinetics of Listeria monocytogenes in refrigerated fresh beef under different packaging atmospheres. LWT-Food Science and Technology, 66, 664-671. doi: 10.1016/j.lwt.2015.11.026 DOI: https://doi.org/10.1016/j.lwt.2015.11.026

Savini, F., Romano, A., Giacometti, F., Indio, V., Pitti, M., Decastelli, L., Devalle, P. L., Gorrasi, I. S. R., Miaglia, S., & Serraino, A. (2023). Investigation of a Staphylococcus aureus sequence type 72 food poisoning outbreak associated with food‐handler contamination in Italy. Zoonoses and Public Health, 70(5), 411-419. doi: 10.1111/zph.13046 DOI: https://doi.org/10.1111/zph.13046

Schoder, D., Guldimann, C., & Märtlbauer, E. (2022). Asymptomatic carriage of Listeria monocytogenes by animals and humans and its impact on the food chain. Foods, 11(21), 3472. doi: 10.3390/foods11213472 DOI: https://doi.org/10.3390/foods11213472

Shanmugasamy, M., Velayutham, T., & Rajeswar, J. (2011). InvA gene specific PCR for detection of Salmonella from broilers. Veterinary World, 4(12), 562-564. doi: 10.5455/vetworld.2011.562-564 DOI: https://doi.org/10.5455/vetworld.2011.562-564

Sophos, J. N. (2014). Meat and meat products. Food Safety Management, 6, 119-162. doi:10.1016/B978-0-12-381504-0.00006-8 DOI: https://doi.org/10.1016/B978-0-12-381504-0.00006-8

Spiker, T., Coenye, T., Vandamm, P., & Lipuma, J. J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiologt, 42(5), 2074-2079. doi: 10.1128/JCM.42.5.2074-2079.2004 DOI: https://doi.org/10.1128/JCM.42.5.2074-2079.2004

Tack, D. M., Kisselburgh, H. M., Richardson, L. C., Geissler, A., Griffin, P. M., Payne, D. C., & Gleason, B. L. (2021). Shiga toxin-producing Escherichia coli outbreaks in the United States, 2010-2017. Microorganisms, 9(7), 1529. doi: 10.3390/microorganisms9071529 DOI: https://doi.org/10.3390/microorganisms9071529

Teider, P. I., Jr., Ribeiro, J. C., Jr., Ossugui, E. H., Tamanini, R., Ribeiro, J., Santos, G. A., Alfieri, A. A., & Beloti, V. (2019). Pseudomonas spp e outros microrganismos psicrotróficos em queijo Minas Frescal brasileiro inspecionado e não inspecionado: potencial de produção proteolítica, lipolítica e AprX1. Pesquisa Veterinária Brasileira, 39(10), 807-815. doi: 10.1590/1678-5150-PVB-6037 DOI: https://doi.org/10.1590/1678-5150-pvb-6037

Thomas, K. M., Glanville, W. A. de, Barker, G. C., Benschop, J., Buza, J. J., Cleaveland, S., Davis, M. A., French, N. P., Mmbaga, B. T., Prinsen, G., Swai, E. S., Zadoks, R. N., & Crump, J. A. (2020). Prevalence of Campylobacter and Salmonella in African food animals and meat: a systematic review and meta-analysis. International Journal of Food Microbiology, 315, 108382. doi: 10.1016/j.ijfoodmicro.2019.108382 DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108382

Tsigarida, E., & Nychas, G. J. E. (2006). Effect of high-barrier packaging films with different oxygen transmissin rates on the growt of Lactobacillus sp. on meat fillets. Journal of Food Protection, 69(4), 943-947. doi: 10.4315/0362-028X-69.4.943 DOI: https://doi.org/10.4315/0362-028X-69.4.943

Wang, X., Wang, Z., Sun, Z., Wang, D., Liu, F., & Lin, L. (2022). In vitro and in situ characterization of psychrotrophic spoilage bacteria recovered from chilled chicken. Foods, 12(1), 95-108. doi: 10.3390/foods12010095 DOI: https://doi.org/10.3390/foods12010095

Watson, S. C., Furbeck, R. A., Fernando, S. C., Chaves, B. D., & Sullivan, G. A. (2023). Spoilage Pseudomonas survive common thermal processing schedules and grow in emulsified meat during extended vacuum storage. Journal of Food Science, 88(5), 2162-2167. doi: 10.1111/1750-3841.16557 DOI: https://doi.org/10.1111/1750-3841.16557

Wei, Q., Wang, X., Sun, D. W., & Pu, H. (2019). Rapid detection and control of psychrotrophic microorganisms in cold storage foods: a review. Trends in Food Science & Technology, 86, 453-464. doi: 10.1016/j.tifs.2019.02.009 DOI: https://doi.org/10.1016/j.tifs.2019.02.009

Wickramasinghe, N. N., Ravensdale, J., Coorey, R., Chandry, S. P., & Dykes, G. A. (2019). The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1622-1635. doi: 10.1111/1541-4337.12483 DOI: https://doi.org/10.1111/1541-4337.12483

Wickramasinghe, N. N., Ravensdale, J., Coorey, R., Dykes, G. A., & Chandry, P. S. (2021). Transcriptional profiling of biofilms formed on chilled beef by psychrotrophic meat spoilage bacterium, Pseudomonas fragi 1793. Biofilm, 3, 100045. doi: 10.1016/j.bioflm.2021.100045 DOI: https://doi.org/10.1016/j.bioflm.2021.100045

Downloads

Publicado

2024-01-30

Como Citar

Mendonça, J. K. S., Nunes, F. L., Meurer, C. M., Ribeiro Júnior, J. C., & Correia, A. P. N. (2024). Acompanhamento da microbiota indicadora e patogênica durante a vida útil de Longissimus dorsi (contrafilé) embalado a vácuo. Semina: Ciências Agrárias, 44(6), 2179–2196. https://doi.org/10.5433/1679-0359.2023v44n6p2179

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.