Concentração inibitória mínima de óleos essenciais contra Staphylococcus aureus isolados de cães com otite externa

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3837

Palavras-chave:

Fitoterapia, Otopatias, Antibacterianos, Antimicrobianos naturais, CIM.

Resumo

A otite canina externa é uma doença que afeta o meato acústico externo de até 20% dos cães em algum período de suas vidas, sem predileção por raça, idade ou sexo. Trata-se de uma doença multifatorial que tem Staphylococcus aureus como um dos principais agentes etiológicos. Antimicrobianos constituem a base para o tratamento desta enfermidade, entretanto, devido ao incremento da resistência antimicrobiana, os fármacos convencionais tem se tornado pouco eficazes, o que requer a busca por terapias alternativas. Neste contexto, os óleos essenciais (OE) apresentam grande potencial terapêutico devido a sua ampla ação antimicrobiana. Este trabalho visou detectar a concentração inibitória mínima (CIM), a partir da qual foram obtidos os índices de MIC50 e MIC90 para a gentamicina e para os OE de Eugenia caryophyllata, Thymus vulgaris, Cymbopogon winterianus, Cymbopogon citratus e Cinnamomum cassia contra 62 Staphylococcus aureus isolados do meato acústico externo de cães otopatas. Todos os OE mostraram ação antibacteriana contra os microrganismos estudados e foram detectadas as seguintes CIM50 e CIM90: Eugenia caryophyllata, 2,42 mg mL-1e 7,45 mg mL-1; Thymus vulgaris, 9,51 mg mL-1 e 22,94 mg mL-1; Cymbopogon winterianus, 26,78 mg mL-1 e 157,79 mg mL-1; Cinnamomum cassia e Cymbopogon citratus CM menores que 16,48 e 27,81 mg mL-1, respectivamente já que estes apresentaram CIM única para todos os isolados testados. Para a gentamicina, foram obtidas CIM50 e CIM90 1ug mL-1 e 8 ug/m, respectivamente. Ademais, a faixa de CIM encontrada para o antibiótico variou de 0,5 a 128 ug mL-1, e os isolados foram classificados em susceptíveis [48 isolados (77,41%) - CIM na faixa de 0,5-4 ug mL-1], intermediários [8 isolados (12,90%) - (CIM = 8ug mL-1] e resistentes [6 isolados (9,68%) - CIM maior, menor 16]. Os resultados encontrados mostraram que os isolados de micro-organismos testados tem potencial para desenvolver resistência antimicrobiana a terapêutica tradicional e que os OE, de acordo com os resultados in vitro, apresentam potencial de uso terapêutico, entretanto futuros estudos devem ser realizados para avaliar a eficácia dos OE in vivo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Geraldo Márcio Costa, Universidade Federal de Lavras

Prof., Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, DCV, UFLA, Lavras, MG, Brasil.

Ingrid Alexandre Prado, Universidade Federal de Lavras

Discente de Pós-Graduação, DCV, UFLA, Lavras, MG, Brasil.

Glei dos Anjos de Carvalho-Castro, Universidade Federal de Lavras

Prof., Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, DCV, UFLA, Lavras, MG, Brasil.

Glaúcia Frasnelli Mian, Universidade Federal de Lavras

Profa, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, DCV, UFLA, Lavras, MG, Brasil.

Carlos Artur Lopes Leite, Universidade Federal de Lavras

Prof., Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, DCV, UFLA, Lavras, MG, Brasil.

Dircéia Aparecida Costa Custódio, Universidade Federal de Lavras

Pesquisador, DCV, UFLA, MG, Brasil.

Roberta Hilsdorf Piccoli, Universidade Federal de Lavras

Profa, Departamento de Ciência dos Alimentos, DCA, UFLA, MG, Brazil.

Referências

Aiemsaard, J., Aiumlamai, S., Aromdee, C., Taweechaisupapong, S., & Khunkitti, W. (2011). The effect of lemongrass oil and its major components on clinical isolate mastitis pathogens and their mechanisms of action on Staphylococcus aureus DMST 4745. Research in Veterinary Science, 91(3), 31-37. doi: 10.10 16/j.rvsc.2011.01.012

Akhtar, M. S., Degaga, B., & Azam, T. (2014). Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: “a review”. Biological Sciences and Pharmaceutical Research, 2(1), 1-7. Retrieved from http://www.journalissues.org/IBSPR/

Al-Mariri, A., & Safi, M. (2014). In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria, Iranian Journal of Medical Sciences, 39(1), 36-43. Retrieved from https://www. ncbi.nlm.nih.gov/pmc/articles/PMC3895893/pdf/ijms-39-36.pdf

Al-Shabib, N. A., Husain, F. M., Ahmad, I., & Baig, M. H. (2017). Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnology & Biotechnological Equipment, 31(2), 387-396. doi: 10.1080/13102818.2017.1281761

Andrade, B. F. M. T., Barbosa, L. N., Probst, I. S., & Fernandes Júnior, A. (2014). Antimicrobial activity of essential oils. Journal of Essential oil Research, 26(1), 34-40. doi: 10.1080/10412905.2013.860409

Baskaran, S. A., Kazmer, G. W., Hinckley, L., Andrew, S. M., & Venkitanarayanan, K. (2009). Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. Journal of Dairy Science, 92(4), 1423-1429. doi: 10.3168/jds.2008-1384.

Benameur, Q., Gervasi, T., Pellizzeri, V., Pľuchtová, M., Tali-Maama, H., Assaous, F., & Ben-Mahdi, M. H. (2018). Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Natural Product Research, 33, 2647-2654. doi: 10.1080/14786419.2018.

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. doi: 10.1038/nrmicro 3380

Bortolin, M., Bidossi, A., De Vecchi, E., Avveniente, M., & Drago, L. (2017). In vitro antimicrobial activity of chlorquinaldol against microorganisms responsible for skin and soft tissue infections: comparative evaluation with gentamicin and fusidic acid. Frontiers in Microbiology, June 8. Article 1039. doi: 10. 3389/fmicb.2017.01039

Bourély, C., Cazeau, G., Jarrige, N., Leblond, A., Madec, J. Y., Haenni, M., & Gay. E. (2019). Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiology and Infection, 147(121), 1-10. doi: 10.1017/S0950268818003278

Briozzo, J., Núncez, L., Chirite, J., Herszage, L., & D’ Aquino, M. (1989). Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. Journal of Applied Bacteriology, 66(1), 69-75. doi: 10.1111/ j.1365-2672.1989.tb02456.x

Brugnera, D. F., Liveira, M. M. M., & Piccoli, R. H. (2011). Essential oils of Cymbopogon sp. in the control of foodborne pathogenic bacteria. Alimentos e Nutrição, 22(3), 339-343. Retrieved from http://serv-bib.fcfar.unesp.br/seer/index.php/alimentos/article/view/1810/1810

Caraciolo, F. B., Maciel, M. A., Santos, J. B., Rabelo, M. A., & Magalhães, V. (2012). Antimicrobial resistance profile of Staphylococcus aureus isolates obtained from skin and soft tissue infections of outpatients from a university hospital in Recife-PE, Brazil. Anais Brasileiro de Dermatologia, 87(6), 857-861. doi: 10.1590/S0365-05962012000600006

Cardoso, M. da G., Santos, M. G. L., Lima, K. R., Souza, E. P., Guimarães, L. G. L., & Andrade, A. M. (2007). Avaliação do potencial fungitóxico do óleo essencial de Syzygium aromaticum (L.) Merr & Perry (cravo-da-índia). Tecno-Lógica, 11(1), 11-14. doi: 10.17058/tecnolog. v11i1.154

Castro, H. G., Barbosa, L. C. A., Leal, T. C. A., Souza, C. M., & Nazareno, A. C. (2007). Crescimento, teor e composição do óleo essencial de Cymbopogon nardus (L). Revista Brasileira de Plantas Medicinais, 9(4), 55-61.

Celiktas, O. Y., Kocabas, E. E., Bedir, H. E., Vardar, S. F., Ozek, T., & Baser, K. H. C. (2007). Antimicrobial activities of methanol extracts and essential oils of Rosmarinus oficinalis, depending on location and seasonal variations. Food Chemistry, 100(2), 553-559. doi: 10.1016/j.foodchem.2005.10.0 11

Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (5nd ed.). Wayne: CLSI Supplement VET01S. Clinical and Laboratory Standards Institute.

Córdoba, S., Vivot, W., Szusz, W., & Albo, G. (2019). Antifungal activity of essential oils against Candida species isolated from clinical samples. Mycopathologia, 184, 615-625. doi: 10.1007/s11046-019-00364-5

Costa, J. G. M., Rodrigues, F. F. G., Angélico, E. C., Silva, M. R., Mota, M. L., Santos, N. K. A.,... Lemos, T. L. G. (2005). Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti. Revista Brasileira de Farmacognosia, 15(4), 304-309. doi: 10.1590/S0102-695X2005000400008

Dal Pozzo, M., Santurio, D. F., Rossatto, L., Vargas, A. C., Alves, S. H., Loreto, E. S., & Viegas, J. (2011). Activity of essential oil from spices against Staphylococcus spp. isolated from bovine mastitis. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(5), 1229-1232. doi: 10.1590/S0102-093520110005 00026

Dal Pozzo, M., Silva, L. É., Flores, S. D., Hartz, A. S., Rossatto, L., Castagna, V. A., Matiuzzi, C. M. (2012). Antibacterial activity of essential oil of Cinnamon and trans-cinnamaldehyde against Staphylococcus spp. isolated from clinical mastitis of cattle and goats. Acta Scientiae Veterinariae, 40(4), 1-5. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/vti-475467

Das, J., Pradhan, S., & Behera, S. S. (2016). Management of otitis externa - a clinical study of 11 dogs. Intas Clinica Polivet, 17(2), 295-297. Retrieved from http://www.indianjournals.com

Ebani, V. V., Bertelloni, F., Najar, B., Nardoni, S., Pistelli, L., & Mancianti. (2020). Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms, 8(252), 1-16. doi: 10.3390/microorganisms8020252

Ebani, V. V., Nardoni, S., Bertelloni, F., Najar, B., Pistelli, L., & Mancianti, F. (2017). Antibacterial and antifungal activity of essential oils against pathogens responsible for otitis externa in dogs and cats. Medicines, 4(21), 1-8. doi: 10.3390/medicines4020021

Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21(4), 308-323. doi: 10.1002/ptr.2072

Ekpenyong, C. E., & Akpan, E. E. (2015). Use of Cymbopogon citratus essential oil in food preservation: recent advances and future perspectives. Critical Reviews in Food Science and Nutrition, 57(12), 2541-2559. doi: 10.1080/10408398.2015.1016140

Firmino, D. F., Cavalcante, T. T. A., Gomes, G. A., Firmino, N. C. S., Rosa, L. D., Carvalho, M. G. de, & Catunda, F. A., Jr. (2018). Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities. Scientific World Journal, 2018, 7405736, 1-9. doi: 10.1155/ 2018/74 05736

Epi-Info 6.04b (1997). A Word Processing, Database and Statistics Program For Public Health. Center of Disease Control & Prevention (CDC), World Health Organization, Geneva, Switzerland, Version 6.04b.

Fu, Y., Zu, Y., Chen, L., S. H. I, X., Wang, Z., Sun, S., & Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy Research, 21(10), 989-994. doi: 10. 1002/ptr.2179

Gheller, B. G., Meirelles, A. C. F., Figueria, P. T., & Holsbach, V. (2017). Bacterial pathogens found in dogs with external otitis and its susceptibility profiles to several antimicrobial. Pubvet, 11(2), 159-167. doi: 10.22256/pubvet. v11n2.159-167

Griffin, C., & Aniya, J. (2017). Otitis controversies. In M. F. S. Torres, & P. Roudebush (Eds.), Advances in Veterinary Dermatology (pp. 210-216). Chichester, West Sussex: Wiley.

Gustafson, J. E., Liew, Y. C., Chew, S., Markham, J., Bell, H. C., Wyllie, S. G., & Warmington, J. R. (1998). Effects of tea tree essential oils on Escherichia coli. Letters on Applied Microbiology, 26(3), 194-198. doi: 10.1046/j.1472-765x.1998. 00317.x

Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985-990. doi: 10.1046/j.1365-2672.1999.00780.x

Hnilica, K. A. (2012). Otite Externa. Keith A. Hnilica, K. A., Patterson, A.P. In: Dermatologia de Pequenos Animais: Atlas Colorido e Guia Terapêutico (pp. 395-409). Rio de Janeiro, RJ: Elsevier Health Sciences.

Hussain, A. I., Anwar, F., & Nigamet, P. S. (2011). Antibacterial activity of some Lamiaceae essential oils using resarzurin as an indicator of cell growth. LW - Food Science and Technology, 44(4), 1199-1206. doi: 10.1016/j.lwt.2010.10.005

Imane, N. I., Fouzia, H., Azzahra, L. F., Ahmed, E., Ismail, G., Idrissa, D., Noureddine, B. (2020). Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. European Journal of Integrative Medicine, 35, 1876-3820. doi: 10.1016/j.eujim.2020.101074

Kahlmeter, G., Brown, D. F. J., Goldstein, F. W., Macgowan, A. P., Mouton, J. W., Osterlund, A., Vatopoulos, A. (2003). European harmonization of MIC breakpoints for antimicrobial susceptibility testing bacteria. Journal of Antimicrobial Chemotherapy, 52(2), 145-148. doi: 10.1093/jac/dkg312

Kaimio, M., Saijonmaa-Koulumies, L., & Laitinen-Vapaavuori, O. (2017). Survey of otitis externa in American Cocker Spaniels in Finland. Acta Veterinaria Scandinavia, 59(14), 1-14. doi: 10.1186/s130 28-017-0282-3

Kamatou, G. P. P., Van Zyl, R. L., Van Vuuren, S. F., Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Viljoen, A. M. (2008). Seasonal variation in essential oil composition, oil toxicity and the biological activity of solvent extracts of three South African Salvia species. South African Journal of Botany, 74(2), 230-237. doi: 10.1016/j.sajb.2007.08.002

Koneman, E. W., Allen, S. D., & Janda, W. M. (2008). Diagnóstico microbiológico: texto e atlas colorido (6a ed.). Rio de Janeiro: Ed. Médica e Científica.

Kot, B., Wierzchowska, K., Grużewska, A., & Lohinau, D. (2017). The effects of selected phytochemicals on biofilm formed by five methicillin-resistant Staphylococcus aureus. Natural Product Research, 32(11), 1299-1302. doi: 10.1080/14786419.2017.1340282

Lang, G., & Buchbauer, G. (2012). A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal, 27(1), 13-39. doi: 10.1002/ ffj.2082

Lee, S., Hwang, J., Kim, J., Lee, J., Kim, H. C., Rhim, H., & Han, J. I. (2019). Biofilm production of coagulase-negative staphylococci isolated from rescued wild animals in the Republic of Korea. Acta Veterinaria Scandinavica, 61(1), 1-5. doi: 10.1186/s13028-019-0485-x

Lertsatitthanakorn, P., Taweechaisupapong, S., Aarunyanart, C., Aromdee, C., & Khunkitti, W. (2010). Effect of citronella oil on time kill profile, leakage and morphological changes of Propionibacterium acnes. Journal of Essential Oil Research, 22(3), 270-274. doi: 10.1080/10412905.2010.9700322

Lopez-Romero, J. C., González-Ríos, H., Borges, A., & Simões, M. (2015). Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, 795435. doi: 10.1155/2015/795435

Lorenzi, H., & Matos, F. J. A. (2002). Plantas medicinais no Brasil: nativas e exóticas. Nova Odesa: Instituto Plantarum.

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011. 03570.x

Malayeri, H. Z., Jamshidi, S., & Zahraei, T. S. (2010). Identification and antimicrobial susceptibility patterns of bacteria causing otitis externa in dogs. Veterinary Research Communications, 34(5), 435-444. doi: 10.1007/s11259-010-9417-y

Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 15(12), 9252-9287. doi: 10.3390/molecules15129252

Moreira, C. A., Oliveira, L. C., Mendes, M. S., Santiago, T. de. M., Barros, E. B., & Carvalho, C. B. M. (2012). Biofilm production by clinical Staphylococci strains from canine otitis. Brazilian Journal of Microbiology, 43(1), 371-374. doi: 10.1590/S1517-83822012000100044

Nascimento, P. F. C., Nascimento, A. C., Rodrigues, C. S., Antoniolli, Â. O. R., Santos, P. O., Barbosa, A. M., Jr., & Trindade, R. C. (2007). Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Revista Brasileira de Farmacognosia, 17(1), 108-113. doi: 10.1590/S0102-695X2007000100020

Nazzaro, F., Fratianni, F., Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474. doi: 10.3390/ph6121451

Netopilova, M., Houdkova, M., Urbanova, K., Rondevaldova, J. P., Van Damme, L., & Kokoska, L. (2020). In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8 hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. Journal of Applied Microbiology, 129(4), 906-915. doi: 10.1111/jam.14683

Nostro, A., Sudano, R. A., Bisignano, G., Marino, A., Cannatelli, M. A., Pizzimenti, F. C.,... Blanco, A. R. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology, 6(4), 519-523. doi: 10.1099/jmm.0.46804-0

O’Bryan, C. A., Pendleton, S. J., Crandall, P. G., & Ricke, S. C. (2015). Potential of plant essential oils and their components in animal agriculture - in vitro studies on antibacterial mode of action. Frontiers in Veterinary Science, 2(35), 1-8. doi: 10.3389/fvets.2015.00035

Oliveira, J. B., Teixeira, M. A., Paiva, L. F., Oliveira, R. F., Mendonça, A. R., & Brito, M. J. A. (2019). In vitro and in vivo antimicrobial activity of Cymbopogon citratus (DC.) stapf. against Staphylococcus spp. isolated from newborn babies in an intensive care unit. Microbial Drug Resistance, 25(10), 1490-1496. doi: 10.1089/mdr.2018.0047

Oliveira, M. A. C., Borges, A. C., Brighenti, F. L., Salvador, M. J., Gontijo, A. V. L., & Koga-Ito Cymbopogon, C. Y. (2017). Cymbopogon citratus essential oil: effect on polymicrobial caries-related biofilm with low cytotoxicity Brazilian Oral Research, 31(89), 1-12. doi: 10.1590/1807-3107bor-2017

Oliveira, V. B., Ribeiro, M. G., Almeida, A. C. S., Paes, A. C., Condas, L. A. Z., Lara, G. H. B., Listoni, F. J. P. (2012). Etiologia, perfil de sensibilidade aos antimicrobianos e aspectos epidemiológicos na otite canina: estudo retrospectivo de 616 casos. Semina: Ciências Agrárias, 33(6), 2367-2374. doi: 10.5433/ 1679-0359.2012v33n6p2367

Opalchenova, G., & Obreshkova, D. (2003). Comparative studies on the activity of basil - an essential oil from Ocimum basilicum L. against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. Journal of Microbiological Methods, 54(1), 105-110. doi: 10.1016/s0167-7012(03)00012-5

Orchard, A., & Van Vuuren, S. (2017). Commercial essential oils as potential antimicrobials to treat skin diseases. Evidence-Based Complementary and Alternative Medicine, 2017: 4517971. doi: 10.1155/20 17/4517971

Ortega-Cuadros, M., Tofiño-Rivera, A. P., Merini, L. J., & Martínez-Pabon, M. C. (2018). Antimicrobial activity of Cymbopogon citratus (Poaceae) on Streptococcus mutans biofilm and its cytotoxic effects. Revista Biologia Tropical, 66(4), 1519-29. doi: 10.15517/rbt. v66i4.33140

Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strains isolated from meat. Meat Science, 73(2), 236-244. doi: 10.1016/j.meatsci.2005.11.019

Penna, B., Varges, R., Martins, G. M., Martins, R. R., & Lilenbaum, W. (2010). Species distribution and antimicrobial susceptibility of Staphylococci isolated from canine otitis externa. Veterinary Dermatology, 21(3), 292-296. doi: 10.1111/j.1365-3164.2009.0084

Petrov, V., Mihaylov, G., Tsachev, I., Zhelev, G., Marutsov, P., & Koev, K. (2013). Otitis externa in dogs: microbiology and antimicrobial susceptibility. Revue de Médecine Vétérinaire, 164(1), 18-22. Retrieved from https://www.revmedvet.com/2013/RMV164_18_22.pdf

Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an overview. Forschende Komplementarmedizin, 16(2), 79-90. doi: 10.1159/000207196

Sahal, G., Woerdenbag, H. J., Hinrichs, W. L. J., Visser, A., Tepper, P. G., Quax, W. J., & Bilkay, I. S. (2020). Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of Ethnopharmacology, 246, 1-9. doi: 10.1016/j.jep.2019.112188.

Scherer, C. B., Botoni, L. S., Coura, F. M., Silva, R. O., Santos, R. D., Heinemann, M. B., & Costa-Val, A. P. (2018). Frequency and antimicrobial susceptibility of Staphylococcus pseudintermedius in dogs with otitis externa. Ciência Rural, 48(4), e20170738. doi: 10.1590/0103-8478cr20170738

Silva, B. C. J. de, Hossain, S., Wimalasena, S. H. M. P., Pathirana, H. N. K. S., Dahanayake, P. S., & Heo, G. J. (2018). Comparative in vitro efficacy of eight essential oils as antibacterial agents against pathogenic bacteria isolated from pet-turtles. Veterinarni Medicina, 63, 335-343. doi: 10.17221/142/ 2017-VETMED.

Suzuki, H., Flemming, J. S., & Traad, M. E. (2008). Uso de óleos essenciais na alimentação de leitões. Ciências Agrárias e Ambientais, 6(4), 519-526. Retrieved from https://periodicos.pucpr.br/index.php/ cienciaanimal/article/viewFile/11648/10985

Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine, 2016, 3012462. doi: 10.1155/2016/3012462

Sykes, J. E., Nagle, T. N., & White, S. D. (2014). Pyoderma, otitis externa, and otitis media. In J. E. Sykes (Ed.), Canine and Feline Infectious Diseases, (pp. 800-813). St. Louis: W.B. Saunders.

Varshney, J. P. (2016). Therapeutic management of otitis externa due to Malassezia pachydermatis and Staph. Infection - a clinical study of 20 dogs. Intas Polivet, 17(2), 300-301. Retrieved from https://www. indianjournals.com/ijor.aspx?target=ijor:ipo&volume=17&issue=2&article=029

Wattanasatcha, A., Rengpipat, S., & Wanichwecharungruang, S. (2012). Thymol nanospheres as an effective antibacterial agent. International Journal of Pharmaceutics, 434(1-2), 360-365. doi: 10.1016/j.ijpharm. 2012.06.017

Yadav, M. K., Chae, S.-W., Im, G. J., Chung, J.-W., & Song, J.-J. (2015). Eugenol: a phyto-compound effective against methicillin-resistant and methicillin- sensitive Staphylococcus aureus clinical strain biofilms. PLoS One, 10(3), e0119564. doi: 10.1371/ journal. pone.0119564

Downloads

Publicado

2021-10-08

Como Citar

Costa, G. M., Prado, I. A., Carvalho-Castro, G. dos A. de, Mian, G. F., Leite, C. A. L., Custódio, D. A. C., & Piccoli, R. H. (2021). Concentração inibitória mínima de óleos essenciais contra Staphylococcus aureus isolados de cães com otite externa. Semina: Ciências Agrárias, 42(6SUPL2), 3837–3854. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3837

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)