Computational archival science and the future of digital records

Authors

DOI:

https://doi.org/10.5433/1981-8920.2024v29n4p122

Keywords:

Computational archival science, Digital record, Information and Knowledge Management, Digital Information Technologies

Abstract

Objective: This study aims to explore how computational archival science has been addressed in peer-reviewed publications, analyzing the integration of digital technologies in the management of digital archival collections and identifying the main trends, tools, and challenges associated.
Methodology: A systematic literature review was conducted using the PRISMA protocol, with searches in the Web of Science, Scopus, Emerald, LISTA, Science Direct, and Springer Link databases. After a screening process, including title, abstract, and full-text analysis, 18 articles were selected. Bibliometric analysis were performed using VOSviewer software, mapping keyword co-occurrences and co-authorship relationships.
Results: The review highlighted that computational archival science is a growing interdisciplinary field characterized by the use of artificial intelligence, machine learning, natural language processing, and data mining to manage and preserve digital records on a large scale. It identified the increasing demand for trained professionals and the need to integrate these technologies into educational curricula. Additionally, it was observed that the United States and the United Kingdom lead publications in this area. Conclusions: Computational archival science represents a necessary evolution to address the challenges of the digital environment, promoting accessibility and efficient processing of large volumes of data. The integration between archival science and computing enables new possibilities for exploring and using digital collections, expanding the impact of archival science in the digital age. Future research could focus on developing specific tools and further epistemological depth within the field.

Downloads

Download data is not yet available.

Author Biographies

Pedro Felipy Cunha da Silva, Universidade Federal da Paraíba - UFPB

PhD student in the Postgraduate Program in Information Science (PPGCI) at the
Universidade Federal da Paraíba (UFPB). Archivist at theUniversidade Federal da Paraíba.

Wagner Junqueira de Araújo, Universidade Federal da Paraíba - UFPB

PhD in Information Science from the  Universidade de Brasília (UNB). Associate Professor III in the Department of Information Science at the Universidade Federal da Paraíba (UFPB).

References

BELL, Mark. From tree to network: reordering an archival catalogue. Records Management Journal, [S. l.], v. 30, n. 3, p. 379-394, 1 jan. 2020. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/RMJ-09-2019- 0051/full/html. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1108/RMJ-09-2019-0051

BELL, Mark.; BUNN, Jenny. Dark archives or a dark age for reasoning over archives? AI and Society, [S. l.], v. 37, n. 3, p. 959-966, 1 set. 2022. Disponível em: https://doi.org/10.1007/s00146-021-01365-z. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1007/s00146-021-01365-z

CARTER, Kirsten Strigel; GONDEK, Abby; UNDERWOOD, William; RANDBY, Teddy; MARCIANO, Richard. Using AI and ML to optimize information discovery in under-utilized, Holocaust-related records. AI and Society, [S. l.], v. 37, n. 3, p. 837-858, 1 set. 2022. Disponível em: https://doi.org/10.1007/s00146-021-01368-w. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1007/s00146-021-01368-w

CHEN, Haihua; KIM, Jeonghyun (Annie); CHEN, Jiangping; SAKATA, Aisa. Demystifying oral history with natural language processing and data analytics: a case study of the Densho digital collection. The Electronic Library, [S. l.], v. 42, DOI: https://doi.org/10.1108/EL-12-2023-0303

n. 4, p. 643-663, 1 jan. 2024. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/EL-12-2023- 0303/full/html. Acesso em: 29 out. 2024.

CUSHING, Amber. L.; OSTI, Giulia. So how do we balance all of these needs?: how the concept of AI technology impacts digital archival expertise. Journal of Documentation, [S. l.], v. 79, n. 7, p. 12-29, 1 jan. 2023. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/JD-08-2022- 0170/full/html. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1108/JD-08-2022-0170

FENG, Huiling; LIAN, Zhiying; PAN, Weimei; QU, Chunmei; ZHOU, Wenhong; WANG, Ning; LI, Mengqiu. Retrospect and prospect: the research landscape of archival studies. Archival Science, [S. l.], v. 21, n. 4, p. 391-411, 1 dez. 2021. Disponível em: https://doi.org/10.1007/s10502-021-09364-1. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1007/s10502-021-09364-1

GARCÍA-MORALES, Elisa. Retención de la información en la empresa: cuestión de sostenibilidad. Anuario Think EPI, [S. l.], v. 15, p. 1-5, jan. 2021. Disponível em: https://doi.org/10.3145/thinkepi.2021.e15f03. Acesso em: 29 out. 2024. DOI: https://doi.org/10.3145/thinkepi.2021.e15f03

HEGEDUS, István. How artificial intelligence and machine learning can help rethink archives? Atlanti+, [S. l.], v. 30, n. 2, p. 57-64, 2020. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0- 85147496843&origin=inward&txGid=deb13850670fcc867791f0cfbb531591. Acesso em: 29 out. 2024.

HOU, Yumeng; SEYDOU, Fadel Mamar.; KENDERDINE, Sara. Unlocking a multimodal archive of Southern Chinese martial arts through embodied cues. Journal of Documentation, [S. l.] v. 80, n. 5, p. 1148-1166, 2024. Disponível em: https://doi.org/10.1108/JD-01-2022-0027. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1108/JD-01-2022-0027

HUTCHINSON, Tim. Natural language processing and machine learning as practical toolsets for archival processing. Records Management Journal, [S. l.],

v. 30, n. 2, p. 155-174, 2020. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0- 85085025120&doi=10.1108%2fRMJ-09-2019-

&origin=inward&txGid=2edea74e6edeb6e24a73ba66c99cd138. Acesso em: 29 out. 2024.

MOHER, David; LIBERATI, Alessandro; TETZLAFF, Jennifer; ALTMAN, Douglas G. Preferred reporting items for systematic reviews and meta- analyses: the PRISMA statement. Plos Medicine, [S. l.], v. 6, n. 7, p. 1-6, 2009. DOI: https://doi.org/10.1371/journal.pmed.1000097. Disponível em: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097 #s5. Acesso em: 15 out. 2024. DOI: https://doi.org/10.1371/journal.pmed.1000097

MCLEOD, Julie; LOMAS, Elizabeth. Record DNA: reconceptualising digital records as the future evidence base. Archival Science, [S. l.], v. 23, n. 3, p. 411-446, 1 set. 2023. Disponível em: https://doi.org/10.1007/s10502-023- DOI: https://doi.org/10.1007/s10502-023-09414-w

-w. Acesso em: 29 out. 2024.

NGOEPE, Mpho.; JACOBS, Lorette.; MOJAPELO, Makutla. Inclusion of digital records in the archives and records management curricula in a comprehensive open distance e-learning environment. Information Development, [S. l.], v. 40, DOI: https://doi.org/10.1177/02666669221081812

n. 2, p. 190-201, 24 jun. 2024. Disponível em: https://journals.sagepub.com/doi/10.1177/02666669221081812. Acesso em 29 out. 2024.

PADHY, Smruti; JANSEN, Greg; ALAMEDA, Jay; BLACK, Edgar;

DIESENDRUCK, Liana; DIETZE, Mike. Brow Dog: leveraging everything towards autocuration. In: 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2015, Santa Clara, CA, USA. Anais [...]. Santa Clara, CA, USA: IEEE, 2015 (pp. 493-500). DOI: 10.1109/BigData.2015.7363791. DOI: https://doi.org/10.1109/BigData.2015.7363791

Disponível em: https://ieeexplore.ieee.org/document/7363791. Acesso em: 29 out. 2024.

RIES, Thorsten.; PALKÓ, Gábor. Born-digital archives. International Journal of Digital Humanities, [S. l.] v. 1, n. 1, p. 1-11, abr. 2019. Disponível em: https://doi.org/10.1007/s42803-019-00011-x. Acesso em: 29 out. 2024. DOI: https://doi.org/10.1007/s42803-019-00011-x

STANČIĆ, Hrvoje. Computational archival science. Moderna Arhivistika, [S. l.],

v. 2018, n. 2, p. 323-330, 2018. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0- 85107473833&origin=inward&txGid=dbb450a07bffc404c46e5c9493c5a1e2. Acesso em: 29 out. 2024.

SEKEFF, Gisela. O emprego dos sonhos. Domingo, Rio de Janeiro, ano 26, n. 1344, p. 30-36, 3 fev. 2002.

TALBOOM, Leontien.; BELL, Mark. Keeping it under lock and keywords: exploring new ways to open up the web archives with notebooks. Archival Science, [S. l.], v. 22, n. 3, p. 393-415, 2022. Disponível em: https://doi.org/10.1007/s10502-022-09391-6. Acesso em 29 out. 2024. DOI: https://doi.org/10.1007/s10502-022-09391-6

THOMAS, Will R.; GALEWSKY, Benjamin; SATHEESAN, Sandeep Puthanveetil; JANSEN, Gregory; MARCIANO, Richard; BRADLEY, Shannon; LEE, Jhong; MARINI, Luigi; MCHENRY, Kenton. Petabytes in Practice: Working with Collections as Data at Scale. Data and Information Management, [S. l.], v. 3, n. 1, p. 18-25, 2019. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0- 85144411248&doi=10.2478%2fdim-2019-0004&origin=inward&txGid=8fc203ce25375a1edfd54005df5362fd. Acesso em: 29 out. 2024.

YANG, Jianliang; YUENAN, Liu; SIHUAN, He; QI, Tianjiao. Computational Archival Science: The New Development of Archival Science. Documentation, Information and Knowledge, [S. l.], v. 38, n. 3, p. 4-13, 2021. Disponível em: http://dik.whu.edu.cn/jwk3/tsqbzs/EN/10.13366/j.dik.2021.03.004. Acesso em: 29 out. 2024.

YANG, Yuchen. Write What You Want: Applying Text-to-Video Retrieval to Audiovisual Archives. Journal on Computing and Cultural Heritage,[S. l.], v. 16, n. 4, 2023. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-85184770102&doi=10.1145%2f3627167&origin=inward&txGid=a0c31b0008b0a 7208bdc2cccbc63bee3. Acesso em: 29 out. 2024.

YANG, Yuchen. Datafication of audiovisual archives: from practice mapping to a thinking model. Journal of Documentation, [S. l.], v. 80, n. 5, p. 1119-1132, 3 set. 2024. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/JD-04-2022- 0093/full/html. Acesso em 29 out. 2024. DOI: https://doi.org/10.1108/JD-04-2022-0093

Published

2024-12-31

How to Cite

Silva, P. F. C. da, & Araújo, W. J. de. (2024). Computational archival science and the future of digital records. Informação & Informação, 29(4), 122–146. https://doi.org/10.5433/1981-8920.2024v29n4p122