Computational Archival Science and the Future of Digital Records
DOI:
https://doi.org/10.5433/1981-8920.2024v29n4p122Keywords:
computational archival science, digital record, information and knowledge management, digital information tecnnologiesAbstract
Objective: This study aims to explore how computational archival science has been addressed in peer-reviewed publications, analyzing the integration of digital technologies in the management of digital archival collections and identifying the main trends, tools, and challenges associated. Method: A systematic literature review was conducted using the PRISMA protocol, with searches in the Web of Science, Scopus, Emerald, LISTA, Science Direct, and Springer Link databases. After a screening process, including title, abstract, and full-text analysis, 18 articles were selected. Bibliometric analysis were performed using VOSviewer software, mapping keyword co-occurrences and co-authorship relationships. Results: The review highlighted that computational archival science is a growing interdisciplinary field characterized by the use of artificial intelligence, machine learning, natural language processing, and data mining to manage and preserve digital records on a large scale. It identified the increasing demand for trained professionals and the need to integrate these technologies into educational curricula. Additionally, it was observed that the United States and the United Kingdom lead publications in this area. Conclusions: Computational archival science represents a necessary evolution to address the challenges of the digital environment, promoting accessibility and efficient processing of large volumes of data. The integration between archival science and computing enables new possibilities for exploring and using digital collections, expanding the impact of archival science in the digital age. Future research could focus on developing specific tools and further epistemological depth within the field.
Downloads
References
BELL, Mark. From tree to network: reordering an archival catalogue. Records Management Journal, v. 30, n. 3, p. 379–394, 1 jan. 2020. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/RMJ-09-2019-0051/full/html . Acesso em: 29 out. 2024.
BELL, Mark.; BUNN, Jenny. Dark archives or a dark age for reasoning over archives? AI and Society, v. 37, n. 3, p. 959–966, 1 set. 2022. Disponível em: https://doi.org/10.1007/s00146-021-01365-z. Acesso em: 29 out. 2024.
CARTER, Kirsten Strigel; GONDEK, Abby; UNDERWOOD, William; RANDBY, Teddy; MARCIANO, Richard. Using AI and ML to optimize information discovery in under-utilized, Holocaust-related records. AI and Society, v. 37, n. 3, p. 837–858, 1 set. 2022. Disponível em: https://doi.org/10.1007/s00146-021-01368-w. Acesso em: 29 out. 2024.
CHEN, Haihua; KIM, Jeonghyun (Annie); CHEN, Jiangping; SAKATA, Aisa. Demystifying oral history with natural language processing and data analytics: a case study of the Densho digital collection. The Electronic Library, v. 42, n. 4, p. 643–663, 1 jan. 2024. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/EL-12-2023-0303/full/html. Acesso em 29 out. 2024.
CUSHING, Amber. L.; OSTI, Giulia. “So how do we balance all of these needs?”: how the concept of AI technology impacts digital archival expertise. Journal of Documentation, v. 79, n. 7, p. 12–29, 1 jan. 2023. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/JD-08-2022-0170/full/html. Acesso em: 29 out. 2024.
FENG, Huiling; LIAN, Zhiying; PAN, Weimei; QU, Chunmei; ZHOU, Wenhong; WANG, Ning; LI, Mengqiu. Retrospect and prospect: the research landscape of archival studies. Archival Science, v. 21, n. 4, p. 391–411, 1 dez. 2021. Disponível em: https://doi.org/10.1007/s10502-021-09364-1. Acesso em 29 out. 2024.
GARCÍA-MORALES, Elisa. Retención de la información en la empresa: cuestión de sostenibilidad. Anuario Think EPI, v. 15, p. 1–5, jan. 2021. Disponível em: https://doi.org/10.3145/thinkepi.2021.e15f03. Acesso em 29 out. 2024.
HEGEDUS, István. How artificial intelligence and machine learning can help rethink archives? Atlanti+, v. 30, n. 2, p. 57–64, 2020. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-85147496843&origin=inward&txGid=deb13850670fcc867791f0cfbb531591. Acesso em 29 out. 2024.
HOU, Yumeng; SEYDOU, Fadel Mamar.; KENDERDINE, Sara. Unlocking a multimodal archive of Southern Chinese martial arts through embodied cues. Journal of Documentation, v. 80, n. 5, p. 1148–1166, 2024. Disponível em: https://doi.org/10.1108/JD-01-2022-0027. Acesso em 29 out. 2024.
HUTCHINSON, Tim. Natural language processing and machine learning as practical toolsets for archival processing. Records Management Journal, v. 30, n. 2, p. 155–174, 2020. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-85085025120&doi=10.1108%2fRMJ-09-2019-0055&origin=inward&txGid=2edea74e6edeb6e24a73ba66c99cd138. Acesso em 29 out. 2024.
MARCONDES, Renato; DA SILVA, Silvio Luiz Rutz. O protocolo Prisma 2020 como uma possibilidade de roteiro para revisão sistemática em ensino de ciências. Revista Brasileira de Pós-Graduação, v. 18, n. 39, p. 1–19, 2023. DOI: 10.21713/rbpg.v18i39.1894. Disponível em: https://rbpg.capes.gov.br/rbpg/article/view/1894. Acesso em: 15 out. 2024.
MOHER, David; LIBERATI, Alessandro; TETZLAFF, Jennifer; ALTMAN, Douglas G.. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Medicine, v. 6, n. 7, p. 1-6, 2009. DOI: https://doi.org/10.1371/journal.pmed.1000097. Disponível em: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097#s5. Acesso em: 15 out. 2024.
MCLEOD, Julie; LOMAS, Elizabeth. Record DNA: reconceptualising digital records as the future evidence base. Archival Science, v. 23, n. 3, p. 411–446, 1 set. 2023. Disponível em: https://doi.org/10.1007/s10502-023-09414-w. Acesso em 29 out. 2024.
NGOEPE, Mpho.; JACOBS, Lorette.; MOJAPELO, Makutla. Inclusion of digital records in the archives and records management curricula in a comprehensive open distance e-learning environment. Information Development, v. 40, n. 2, p. 190–201, 24 jun. 2024. Disponível em: https://journals.sagepub.com/doi/10.1177/02666669221081812. Acesso em 29 out. 2024.
OLADEJO, Babatunde Kazeem; HOFMAN, Darra. Records in social media: a new (old) understanding of records management. Records Management Journal, v. 33, n. 2/3, p. 148–164, 1 jan. 2023. Disponível em: https://doi.org/10.1108/RMJ-03-2023-0019. Acesso em 29 out. 2024.
PADHY, Smruti; JANSEN, Greg; ALAMEDA, Jay; BLACK, Edgar; DIESENDRUCK, Liana; DIETZE, Mike. Brow Dog: Leveraging everything towards autocuration. In: 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2015, Santa Clara, CA, USA. [Anais]. Santa Clara, CA, USA: IEEE, 2015 (pp. 493-500). DOI: 10.1109/BigData.2015.7363791. Disponível em: https://ieeexplore.ieee.org/document/7363791. Acesso em: 29 out. 2024.
RIES, Thorsten.; PALKÓ, Gábor. Born-digital archives. International Journal of Digital Humanities, v. 1, n. 1, p. 1–11, abr. 2019. Disponível em: https://doi.org/10.1007/s42803-019-00011-x. Acesso em 29 out. 2024.
STANČIĆ, Hrvoje. Computational archival science. Moderna Arhivistika, v. 2018, n. 2, p. 323–330, 2018. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-85107473833&origin=inward&txGid=dbb450a07bffc404c46e5c9493c5a1e2. Acesso em 29 out. 2024.
TALBOOM, Leontien.; BELL, Mark. Keeping it under lock and keywords: exploring new ways to open up the web archives with notebooks. Archival Science, v. 22, n. 3, p. 393–415, 2022. Disponível em: https://doi.org/10.1007/s10502-022-09391-6. Acesso em 29 out. 2024.
TELLA, Adeyinka; AMUDA, Halimah Odunayo; AJANI, Yusuf. Relevance of blockchain technology and the management of libraries and archives in the 4IR. Digital Library Perspectives, v. 38, n. 4, p. 460–475, 1 jan. 2022. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/DLP-08-2021-0065/full/html. Acesso em 29 out. 2024.
THOMAS, Will R.; GALEWSKY, Benjamin; SATHEESAN, Sandeep Puthanveetil; JANSEN, Gregory; MARCIANO, Richard; BRADLEY, Shannon; LEE, Jhong; MARINI, Luigi; MCHENRY, Kenton. Petabytes in Practice: Working with Collections as Data at Scale. Data and Information Management, v. 3, n. 1, p. 18–25, 2019. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-85144411248&doi=10.2478%2fdim-2019-0004&origin=inward&txGid=8fc203ce25375a1edfd54005df5362fd. Acesso em 29 out. 2024.
YANG, Jianliang; YUENAN, Liu; SIHUAN, He; QI, Tianjiao. Computational Archival Science: The New Development of Archival Science. Documentation, Information and Knowledge, v. 38, n. 3, p. 4–13, 2021. Disponível em: http://dik.whu.edu.cn/jwk3/tsqbzs/EN/10.13366/j.dik.2021.03.004. Acesso em 29 out. 2024.
YANG, Yuchen. Write What You Want: Applying Text-to-Video Retrieval to Audiovisual Archives. Journal on Computing and Cultural Heritage, v. 16, n. 4, 2023. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-85184770102&doi=10.1145%2f3627167&origin=inward&txGid=a0c31b0008b0a7208bdc2cccbc63bee3. Acesso em 29 out. 2024.
YANG, Yuchen. Datafication of audiovisual archives: from practice mapping to a thinking model. Journal of Documentation, v. 80, n. 5, p. 1119–1132, 3 set. 2024. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/JD-04-2022-0093/full/html. Acesso em 29 out. 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pedro Felipy Cunha da Silva, Wagner Junqueira de Araújo
This work is licensed under a Creative Commons Attribution 4.0 International License.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.
O conteúdo dos textos e a citação e uso de imagens submetidas são de inteira responsabilidade dos autores.
Em todas as citações posteriores, deverá ser consignada a fonte original de publicação, no caso a Informação & Informação.