Soluções numéricas para equações diferenciais implícitas com singularidades

Soluções numéricas para equações diferenciais implícitas com singularidades

Autores

DOI:

https://doi.org/10.5433/1679-0375.2022v43n1Espp3

Palavras-chave:

Equações diferenciais implícitas, Singularidades, Equações algébrico-diferenciais

Resumo

Neste artigo apresentamos uma tecnica para tratar com equacoes diferenciais implicitas exibindo singularidades. Nossa abordagem e geometrica e usamos o conceito de estrutura de contato em uma variedade associada a equacao diferencial. Neste contexto provamos um teorema de existencia e unicidade. Tambem mostramos como estas equacoes se relacionam com resultados geometricos conhecidos. Tambem indicamos como o metodo pode ser implementado usando tecnicas de metodos de continuacao e metodos BDF (Formula de Diferenciacao Atrasada).

Biografia do Autor

Antonio Castelo, Universidade de São Paulo - USP

Prof. Dr. do Departamento de Matemática Aplicada e Estatística - USP, São Carlos

Geovan Tavares, Pontifícia Universidade Católica de São Paulo - PUC-SP

Prof. Dr. do Departamento de Matemática, PUC-Rio, Rio de Janeiro.

Juliana Bertoco, Universidade de São Paulo - USP

Prof. Dr. do Departamento de Matemática Aplicada e Estatística - USP, São Carlo.

Referências

ALLGOWER, E.; GEORG, K. Numerical continuation methods. Berlin: Springer-Verlag, 1990.

ARNOLD, V. I. Geometrical methods in the theory of ordinary differential equations. Berlin: Springer-Verlag, 1988.

ASCHER, U.; PETZOLD, L. Projected collocation for higher-order higher-index differential-algebraic equations. Journal of Computational and Applied Mathematics, Antwerp, v. 43, p. 243-259, 1992.

ASCHER, U.; PETZOLD, L. Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: SIAM, 1998.

BRENAN, K. E.; CAMPBELL, S. L.; PETZOLD L. R. Numerical solution of initial-value problems in differential-algebraic equations. New York: North-Holland, 1989.

BRENAN, K. E.; CAMPBELL, S. L.; PETZOLD L. R. Numerical solution of initial-value problems in differential-algebraic equations. Philadelphia: SIAM, 1996. Revised and corrected reprint of the 1989 original, with an additional chapter and additional references.

DARA, L. Singularites generiques des equations differentielles multiformes. Bulletin of the Brazilian Mathematical Society, Rio de Janeiro, v. 6, p. 95-128, 1975. DOI: DOI:10.1007/BF02584779.

DARBOUX, M. G. Sur les solutions singulières des équations aux derivées ordinaires du premier ordre. Bulletin des sciences mathématiques et astronomiques, Paris, v. 4, p. 158-176, 1873.

DAVYDOV, A. A. Normal form of a differential equation, not solvable for derivative, in a neighborhood of a singular point. Functional Analysis and its Applications, New York, v. 19, n. 2, p. 81-89, 1985.

DEUFLHARD, P.; HAIRER, E.; ZUGCK, J. Onestep and extrapolation methods for differential-algebraic systems. Numerische Mathematik, Berlin, v. 51, n. 5, p. 501-516, 1987.

FREITAS, S. R. Simplicial aproximation of implicitly defined manifolds and differential-algebraic equations. 1991. Thesis (Doctor) - Catholic University, Rio de Janeiro, 1991.

FREITAS, S. R.; TAVARES, G. Solving implicit ODEs by simplicial methods. In: LAURENT, P. L.; MÉHAUTÉ, A. L.; SCHUMAKER, L. L. (ed.). Curves and Surfaces. Boston: Academic Press, 1991. p. 193- 196.

HAIRER, E.; WANNES, G. Solving ordinary differential equations II. Berlin: Springer-Verlag, 1989.

HAIRER, E.; WANNER, G. Solving ordinary differential equations II: stiff and differential-algebraic problems. 2. ed. Berlin: Springer, 1996.

JACKSON, K. R.; STAKS-DAVIS, R. An alternative implementation of variable step-size multstep formulas for stiff ODEs. ACM Transactions on Mathematical Software, New York, v. 6, n. 3, p. 295-318, 1980.

JEPSON, A.; SPENCE, A. On implicit ordinary differential equations. IMA Journal of Numerical Analysis, Oxford, v. 4, n. 3, p. 253-274, 1984

KUNKEL, P.; MEHRMANN, W. R.; WEICKERT, J. GELDA: a software package for the solution of general linear differential algebraic equations. SIAM Journal Scientific Computing, Philadelphia, v. 18, p. 115-138, 1997.

KUNKEL, P.; MEHRMANN, W. R.; SEUFER, I. GENDA: A software package for the solution of general nonlinear differential-algebraic equations. Institut für Mathematik, Technische Universität Berlin, Berlin, n. 7, p. 30-32, 2002.

KUNKEL, P.; MEHRMANN, V. Differential-algebraic equations analysis and numerical solution. Zurich: EMS Publishing House, 2006.

LUBICH, CH; NOWAK, U.; POHLE, U.; ENGSTLER, CH. MEXX-Numerical software for the integration of constrained mechanical multibody systems. Berlin: ZIB, 1992.

PETZOLD, L. Differential/algebraic equations are not ode’s. SIAM Journal on Scientific and Statistical Computing, Philadelphia, v. 3, n. 3, p. 367-384, 1982. DOI: https://doi.org/10.1137/0903023

RABIER, P. J. Implicit Differential equations near a singular point. Journal of Mathematical Analysis and Applications, Orlando, v. 144, n. 2, p. 425-449, 1989. DOI: https://doi.org/10.1016/0022-247X(89)90344-2

RABIER, P. J.; RHEINBOLDT, W. C. A general existence and uniqueness theory for implicit differential algebraic equations. Differential and Integral Equations, Athens, v. 4, p. 563-582, 1991. DOI: 10.21236/ada217965.

RABIER, P. J.; RHEINBOLDT, W. C. Theoretical and numerical analysis of differential-algebraic equations. In: CIARLET, P. G.; LIONS, J. L. (ed.). Handbook of Numerical Analysis. Amsterdam: Elsevier, 2002. v. 8, p. 183–540.

RHEINBOLDT, W. C. Differential-algebraic systems as differential equations on manifolds. Mathematics of Computation, Providence, v. 43, p. 473-482, 1984. DOI: https://doi.org/10.2307/2008288.

RIAZA, R. Differential-algebraic systems: analytical aspects and circuit applications. Singapore: World Scientific, 2008.

SERBAN, R.; HINDMARSH, A. C. CVODES: the sensitivity-enabled ODE solver in SUNDIALS. In: INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2005, California. Proceedings […]. California: ASME, 2005. p. 1-13.

SOSEN, H. V. Part I: folds and bifurcations in the solutions of semi-explicit differential-algebraic equations. 1994. Thesis (Doctor) - California Institute of Technology, California, 1994.

THOM, R. Sur les equations différentielles multiformes et leurs intégrales singulières. Bulletin of the Brazilian Mathematical Society, Rio de Janeiro, v. 3, n. 1, p. 1-11, 1971.

TOLSMA, J.; BARTON, P. DAEPACK: An open modeling environment for legacy models. Industrial & Engineering Chemistry Research, Washington, v. 39, n. 6, p. 1826-1839, 2000.

WASOW, W. Asymptotic expansions for ordinary equations. [Paris]: Interscience, 1965.

Downloads

Publicado

2022-05-17

Como Citar

Castelo, A., Tavares, G., & Bertoco, J. (2022). Soluções numéricas para equações diferenciais implícitas com singularidades. Semina: Ciências Exatas E Tecnológicas, 43(1Esp), 3–16. https://doi.org/10.5433/1679-0375.2022v43n1Espp3

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Loading...