Edge Impulse Potential to Enhance Object Recognition Through Machine Learning

Edge Impulse Potential to Enhance Object Recognition Through Machine Learning

Authors

DOI:

https://doi.org/10.5433/1679-0375.2024.v45.49197

Keywords:

artificial intelligence, machine learning, object recognition, low-code applications

Abstract

Machine Learning (ML) is a powerful artificial intelligence branch that can help businesses, whether small or large, in a variety of industries. It is an option for replacing resources with high operating costs. The aim of this study was to use the Edge Impulse platform as an ML tool option. The system applies low-code frameworks which abstracts a series of complex techniques applied in ML, such as data processing and AI components structure. It implies a time reduction during the development period. Using Edge Impulse allows a more user-friendly interface alternative with an easy-to-interpret logic flow. The study focused an application to do an object recognition, aiming the system capacity limit. The autogenerated accuracy value, pointed by the system indicated 97.9 % after the training step and 89 % after retesting the first 20 mices, photographed in different image angles, indicating a possible model overfitting. Even though, the system showed promise in terms of classifying objects. Some adjustments in the image dataset can improve the model capacity of recognition, as the amount of images showed insufficient at the survey's conclusion.

Downloads

Download data is not yet available.

Author Biographies

Gabriele Regina Pinaso, SENAI Félix Guisard College of Technology

Postgraduate Student, SENAI Félix Guisard College of Technology, Taubaté, São Paulo, Brazil

Leonardo Marcondes Figueiredo, SENAI Félix Guisard College of Technology

Postgraduate Student, SENAI Félix Guisard College of Technology, Taubaté, São Paulo, Brazil

Orlando Rosa Júnior , SENAI Félix Guisard College of Technology

MSc Professor, SENAI Félix Guisard College of Technology, Taubaté, São Paulo, Brazil

Marco Rogério da Silva Richetto, SENAI Félix Guisard College of Technology

PhD student, Prof., SENAI College of Technology, Félix Guisard, Taubaté, SP, Brazil.

References

Abdullah, A., & Yih, T. Y. (2014). Implementing Learning Contracts in a Computer Science Course as a Tool to Develop and Sustain Student Motivation to Learn. Procedia - Social and Behavioral Sciences, 123, 256–265. DOI: https://doi.org/10.1016/j.sbspro.2014.01.1422

Bilik, S., & Horak, K. (2022). SIFT and SURF based feature extraction for the anomaly detection. ArXiv, 2, 1-7.

Block, S. B., da Silva, R. D., Dorini, L. B., & Minetto, R. (2021). Inspection of Imprint Defects in Stamped Metal Surfaces Using Deep Learning and Tracking. IEEE Transactions on Industrial Electronics, 68(5), 4498–4507. DOI: https://doi.org/10.1109/TIE.2020.2984453

Calixto, J. M. T., Corrêa, M. S., & De Oliveira, M. A. (2022). A empregabilidade da inteligência artificial na automação do setor logístico para controle de carga. Episteme Transversalis, 13(2), 1–30.

Carou, D., Sartal, A., & Davim, J. P. (2022). Machine Learning and Artificial Intelligence with Industrial Applications: From Big Data to Small Data. Springer. DOI: https://doi.org/10.1007/978-3-030-91006-8

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. (2020). Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), 1–26. DOI: https://doi.org/10.3390/su12020492

Cınar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 1–42. DOI: https://doi.org/10.3390/su12198211

Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges. Computers in Industry, 123, 1–15. DOI: https://doi.org/10.1016/j.compind.2020.103298

Hymel, S., Banbury, C., Situnayake, D., Elium, A., Ward, C., Kelcey, M., Baaijens, M., Majchrzycki, M., Plunkett, J., Tischler, D., Grande, A., Moreau, L., Maslov, D., Beavis, A., Jongboom, J., & Reddi, V. J. (2023). Edge impulse: An mlops platform for tiny machine learning. ArXiv, 3, 1-15.

Jain, V., Wadhwani, K., & Eastman, J. K. (2023). Artificial intelligence consumer behavior: A hybrid review and research agenda. Journal of Consumer Behavior, 23(2), 676–697. DOI: https://doi.org/10.1002/cb.2233

Klein, P., & Bergmann, R. (2018). Data generation with a physical model to support machine learning research for predictive maintenance.

LoPiano, S. (2020). Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanit Soc Sci Commun, 7(9), 1–7. DOI: https://doi.org/10.1057/s41599-020-0501-9

Mahesh, B. (2020). Machine learning algorithms a review. International Journal of Science and Research (IJSR), 9(1), 381–386. DOI: https://doi.org/10.21275/ART20203995

Mery, D. (2020). Aluminum casting inspection using deep learning: A method based on convolutional neural networks. Journal of Nondestructive Evaluation, 39, 1–12. DOI: https://doi.org/10.1007/s10921-020-0655-9

Mezavila, S. A., Dias, A. A., & Franco, M. E. (2021). Aprendizagem de máquina aplicada a análise de batimentos cardíacos. Eixos Tech, 8(1), 1–14. DOI: https://doi.org/10.18406/2359-1269v8n12021191

Mihigo, I. N., Zennaro, M., Uwitonze, A., Rwigema, J., & Rovai, M. (2022). On-device iot-based predictive maintenance analytics model: Comparing tinylstm and tinymodel from edge impulse. Sensors, 22(14), 1–20. DOI: https://doi.org/10.3390/s22145174

Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 1–16. DOI: https://doi.org/10.1016/j.ijpe.2021.108250

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4), 1–44. DOI: https://doi.org/10.3390/info11040193

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 1–21. DOI: https://doi.org/10.1007/s42979-021-00592-x

Schulz, A., Stathatos, S., Shriver, C., & Moore, R. (2023). Utilizing online and open-source machine learning toolkits to leverage the future of sustainable engineering. ArXiv, 1, 1–13. DOI: https://doi.org/10.18260/1-2--44595

Sundaram, S., & Zeid, A. (2023). Artificial intelligence based smart quality inspection for manufacturing. Micromachines, 14(3), 1–19. DOI: https://doi.org/10.3390/mi14030570

Tarantino, A. (2022). Smart Manufacturing: The lean six sigma way. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119846642

Taulli, T. (2020). Introdução à Inteligência Artificial: uma Abordagem Não Técnica. Novatec Editora.

Winfield, A. F. T., & Jirotka, M. (2018). Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philosophical Transactions of the Royal Society A, 376(2133), 1–13. DOI: https://doi.org/10.1098/rsta.2018.0085

Xuecai, X., Gui, F., Yujingyang, X., Zigi, Z., Ping, C., Baojun, L., & Song, J. (2019). Risk prediction and factors risk analysis based on ifoa-grnn and apriori algorithms: Application of artificial intelligence in accident prevention. Process Safety and Environmental Protection, 122, 169–184. DOI: https://doi.org/10.1016/j.psep.2018.11.019

Downloads

Published

2024-06-21

How to Cite

Regina Pinaso, G., Marcondes Figueiredo, L., Rosa Júnior , O., & da Silva Richetto, M. R. (2024). Edge Impulse Potential to Enhance Object Recognition Through Machine Learning. Semina: Ciências Exatas E Tecnológicas, 45, e49197. https://doi.org/10.5433/1679-0375.2024.v45.49197

Issue

Section

Engineerings
Loading...