A simple numerical scheme to linear radiative transfer in hollow and solid spheres

A simple numerical scheme to linear radiative transfer in hollow and solid spheres

Authors

DOI:

https://doi.org/10.5433/1679-0375.2020v41n1p21

Keywords:

Linear radiative transfer, Hollow and solid spheres, Discrete ordinates method, Diamond diffences,

Abstract

In this work we consider the linear radiative transfer in hollow and solid spheres and  the solution in a medium  with diffusely reflecting boundaries and energy source as well. The discrete ordinates method with diamond differences scheme is used to calculate the radiation intensities and the partial heat fluxes at the boundaries. Ours results were obtained for forward, isotropic and backward scattering and were compared with data in the literature.

Downloads

Download data is not yet available.

Author Biographies

Cibele Aparecida Ladeia, Universidade Federal do Rio Grande do Sul

Post-doctorate in Engineering-UFRGS. Adjunct Professor in the Department of Pure and Applied Mathematics at the Universidade Federal do Rio Grande do Sul.

Marcelo Schramm, Universidade Federal de Pelotas

PhD in Mechanical Engineering from the Universidade Federal do Rio Grande do Sul. Professor at the Universidade Federal de Pelotas

Julio Cesar Lombaldo Fernandes, Universidade Federal do Rio Grande do Sul

Post-Doctor in Applied Mathematics at the Universidade Federal do Rio Grande do Sul. Adjunct Professor at the Universidade Federal do Rio Grande do Sul

References

ABULWAFA, E. M. Radiative-transfer in a linearly- anisotropic spherical medium. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 49, n. 2, p. 165 – 175, 1993. Available from internet: <https://doi.org/10.1016/0022-4073(93)90057-O>.

ABULWAFA, E. M.; ATTIA, M. T. Radiative transfer in a spherical medium by the variational Pomraning-Eddington technique. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 58, n. 1, p. 101 – 114, 1997. Available from internet: <https://doi.org/10.1016/S0022-4073(97)00021-6>.

CHANDRASEKHAR, S. The Radiative Transfer. Oxford University Press, New York, 1950.

ELGHAZALY, Radiative Transfer Equation for Anisotropic Spherical Medium with Specular Reflective Index. Proceeding of the seventh Nuclear and Particle Physics Conference, Egyty, p. 291-300, 2009. Available from internet: <https://inis.iaea.org/search>. Acess on: 31 Mar. 2020.

LEWIS, E. E.; MILLER JR., W. F. Computational Methods of Neutron Transport. John Wiley & Sons, New York, 1984.

MODEST, M. F. Radiative Heat Transfer. Academic Press, New York, 2013

HOWELL, J. R.; MENGUC, M. P.; SIEGEL, R. Thermal Radiation Heat Transfer. CRC Press, New York, 2016.

{THYNELL, S.; OZISIK, M. N. Radiation transfer in an isotropically scattering solid sphere with space dependent albedo, $\omega(r)$. \textit{Journal of Heat Transfer}, v. 107, n. 3, p. 732 – 734, 1985. <https://doi.org/10.1115/1.3247491>.}

TSAI, J. R.; OSIZIK M. N.; SANTARELLI, F. Radiation in spherical symmetry with anisotropic scattering and variable properties. \textit{Journal of Quantitative Spectroscopy and Radiative Transfer}, v. 42, n. 3, p. 187-199, 1989. Available from internet: <https://doi.org/10.1016/0022-4073(89)90082-4>.

SGHAIER, T. Study of Radiation in Spherical Media Using Moment Method. \textit{American Journal of Physics and Applications}, v. 1, n. 1, p. 25-32, 2013. Available from internet: <https://doi: 10.11648/j.ajpa.20130101.15>.

Downloads

Published

2020-06-20

How to Cite

Ladeia, C. A., Schramm, M., & Fernandes, J. C. L. (2020). A simple numerical scheme to linear radiative transfer in hollow and solid spheres. Semina: Ciências Exatas E Tecnológicas, 41(1), 21–30. https://doi.org/10.5433/1679-0375.2020v41n1p21

Issue

Section

Original Article
Loading...