Variação do escore de condição corporal da vaca durante o terço final de gestação e seus efeitos no desempenho da progênie
DOI:
https://doi.org/10.5433/1679-0359.2023v44n6p2163Palavras-chave:
Confinamento, Consumo alimentar residual, Marmoreio, Programação fetal, Qualidade de carne.Resumo
A nutrição materna na gestação tem sido recentemente associada à formação fetal e ao potencial produtivo da progênie na vida adulta. Uma das maneiras eficientes de avaliar o status nutricional da vaca gestante é através do escore de condição corporal (ECC). Desta forma, o objetivo do trabalho foi avaliar os efeitos da variação do ECC da vaca na gestação sobre o desempenho e características pós-abate da progênie. As progênies foram divididas conforme o desempenho das vacas: LOST, vacas que perderam 0,20 pontos de BCS; KEPT, vacas que mantiveram BCS; WON, vacas que ganharam 0,23 pontos de BCS no terço final de gestação. Foi avaliado o desempenho da progênie do nascimento até o abate, bem como as características da carcaça e carne dos animais. O delineamento experimental utilizado foi inteiramente casualizado com três tratamentos. Vacas WON apresentaram maior peso e ECC ao parto em relação às vacas LOST. O desempenho da progênie não foi influenciado pela variação do ECC da vaca na gestação (P>0.05), porém, apresentam comportamentos distintos entre as fases de crescimento. Durante a terminação em confinamento, novilhos LOST tenderam (P = 0.1013) a apresentar maior consumo de matéria seca em relação às progênies KEPT e WON (10.10 vs 9.75 e 9.24 kg dia-1, repectivamente). Novilhos WON foram mais eficientes para RFI (Residual Feed Intake) e mais produtivos para RWG (Residual Weight Gain) em relação aos animais LOST. Do mesmo modo, a progênie WON tendeu a apresentar maior deposição de gordura subcutânea (P = 0.0826) e de marmoreio (P = 0.0961) em relação aos novilhos LOST e KEPT. Desta forma, o acúmulo de escore corporal materno durante a gestação demonstra o atendimento das exigências para o crescimento fetal, aspecto que favorece o desenvolvimento e a formação de animais superiores.
Downloads
Referências
Alvares, C. A., Stape, J. L., Sentelhas, P. S., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507
Bohnert, D. W., Stalker, L. A., Mills, R. R., Nyman, A., Falck, S. J., & Cooke, R. F. (2013). Late gestation supplementation of beef cows differing in body condition score: effects on cow and calf performance. Journal of Animal Science, 91(1), 5485-5491. doi: 10.2527/jas2013-6301 DOI: https://doi.org/10.2527/jas.2013-6301
Broadhead, D., Mulliniks, J. T., & Funston, R. N. (2019). Development programming in a beef production system. Veterinary Clinics Food Animal, 35(1), 379-390. doi: 10.1016/j.cvfa.2019.02.011 DOI: https://doi.org/10.1016/j.cvfa.2019.02.011
Du, M., Huang, Y., Das, A. K., Yang, Q., Duarte, M. S., Dodson, M. V., & Zhu, M. J. (2013). Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. Journal Animal Science, 91(1), 1419-1427. doi: 10.2527/jas2012-5670 DOI: https://doi.org/10.2527/jas.2012-5670
Du, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P., & Nathanielsz, P. W. (2010). Fetal programming of skeletal muscle development in ruminant animals. Journal Animal Science, 88(1), 51-60. doi: 10.2527/jas.2009-2311 DOI: https://doi.org/10.2527/jas.2009-2311
Du, M., Wang, B., Fu, X., Yang, Q., & Zhu, M. J. (2015). Fetal programming in meat production. Meat Science, 109(1), 40-47. doi: 10.1016/j.meatsci.2015.04.010 DOI: https://doi.org/10.1016/j.meatsci.2015.04.010
Duarte, M. S., Gionbelli, M. P., Paulino, P. V. R., Serão, N. V. L., Martins, T. S., Tótaro, P. I. S., Neves, C. A., Vaçadares Filho, S. C., Dodson, M. V., Zhu, M., & Du, M. (2013). Effects of maternal nutrition on development of gastrointestinal tract of bovine fetus at different stages of gestation. Livestock Science, 153(1), 60-65. Doi: 10.1016/j.livsci.2013.01.006 DOI: https://doi.org/10.1016/j.livsci.2013.01.006
Greenwood, D. P., & Bell, A. W. (2019). Developmental programming and growth of livestock tissues for meat production. Veterinary Clinics Food Animal, 35(2), 303-319. doi: 10.1016/j.cvfa.2019.02.008 DOI: https://doi.org/10.1016/j.cvfa.2019.02.008
Gutiérrez, V., Espasandín, A. C., Machado, P., Bielli, A., Genovese, P., & Carriquiry, M. (2014). Effects of calf early nutrition on muscle fiber characteristics and gene expression. Livestock Science, 167(1), 408-416. doi: 10.1016/j.livsci.2014.07.010 DOI: https://doi.org/10.1016/j.livsci.2014.07.010
Hankins, O. G., & Howe, P. E. (1946). Estimation of the composition of beef carcasses and cuts. Technical Bulletin.
Klein, J. L., Machado, D. S., Adams, S. M., Pötter, L., Alves, D. C., Fº., & Brondani, I. L. (2021). Beef cow weight variations during gestation and offspring performance: a meta-analysis. Semina: Ciências Agrárias, 42(6), 3961-3976. doi: 10.5433/1679-0359.2021v42n6Supl2p3961 DOI: https://doi.org/10.5433/1679-0359.2021v42n6Supl2p3961
Lowman, B. G., Scott, N., & Somerville, S. (1973). Condition scoring beef cattle (5nd ed.). East of Scotland College of Agriculture.
Marques, R. S., Cooke, R. F., Rodrigues, M. C., Moriel, P., & Bohnert, D. W. (2016). Impacts of cow body condition score during gestation on weaning performance of the offspring. Livestock Science, 191(1), 174-178. doi: 10.1016/j.livsci.2016.08.007 DOI: https://doi.org/10.1016/j.livsci.2016.08.007
McCarty, K. J., Washburn, J. L., Taylor, R. K., & Long, N. M. (2020). The effects of early- or mid-gestation nutrient restriction on bovine fetal pancreatic development. Domestic Animal Endocrinology, 70(1), 106377. doi: 10.1016/j.domaniend.2019.07.005 DOI: https://doi.org/10.1016/j.domaniend.2019.07.005
Mohrhauser, D. A., Taylor, A. R., Underwood, K. R., Pritchard, R. H., Werts-Lutz, A. E., & Blair, A. D. (2015). The influence of maternal energy status during midgestation on beef offspring carcass characteristics and meat quality. Journal of Animal Science, 93(1), 786-793. doi: 10.2527/jas2014-8567 DOI: https://doi.org/10.2527/jas.2014-8567
Müller, L. (1987). Normas para avaliação de carcaças e concurso de carcaça de novilhos (2a ed.). Universidade Federal de Santa Maria.
National Research Council (2000). Nutrient requirements of beef cattle (7nd ed.). National Academy Press.
Ramírez, M., Testa, L. M., Lópes Valiente, S., La Torre, E., Long, N. M., Rodriguez, A. M. E., Pavan, H., & Maresca, S. (2020). Maternal energy status during late gestation: Effects on growth performance, carcass characteristics and meat quality of steers progeny. Meat Science, 164(19), 1-7. doi: 10.1016/j.meatsci.2020.108095 DOI: https://doi.org/10.1016/j.meatsci.2020.108095
Reynolds, L. P., Borowicz, P. P., Caton, J. S., Crouse, M. S., Dahlen, C. R., & Ward, A. K. (2019). Developmental programming of fetal growth and development. Veterinary Clinics Food Animal, 35(2), 229-247. doi: 10.1016/j.cvfa.2019.02.006 DOI: https://doi.org/10.1016/j.cvfa.2019.02.006
Statistical Analysis Systems Institute (2016). SAS User’s guide version 3.5 SAS® Studio University Edition. SAS Institute Inc.
Symonds, M. E., Sebert, S. P., & Budge, H. (2010). Nutritional regulation of fetal growth and implications for productive life in ruminants. Animal, 4(7), 1075-1083. doi: 10.1017/S1751731110000479 DOI: https://doi.org/10.1017/S1751731110000479
Tanner, A. R., Bauer, M. L., Kennedy, V. C., Keomanivong, F. E., Kirsch, J. D., Reynolds, L. P., Stokka, G. L., Rodas-Gonzalez, A., Ward, A. K., Dahlen, C. R., Neville, B. W., Ominski, K, H., Vonnahme, K. A., & Swanson, K. C. (2020). Influence of corn supplementation to beef cows during mid-late-gestation: Maternal feed intake, body condition, plasma metabolites, and calf growth. Livestock Science, 240(1), 104142. doi: 10.1016/j.livsci.2020.104142 DOI: https://doi.org/10.1016/j.livsci.2020.104142
Washburn, J. L., Taylor, R. K., & Long, N. M. (2016). The effects of early or mid-gestationnutrient restriction on bovine fetal pancreatic development. Journal of Animal Science, 94(sup.1), 67-68. doi: 10.2527/ssasas2015-137 DOI: https://doi.org/10.2527/ssasas2015-137
Webb, M. J., Block, J. J., Funston, R. N., Underwood, K. R., Legako, J. F., Harty, A. A., Salverson, R. R., Olson, K. C., & Blair, A. D. (2019). Influence of maternal protein restriction in primiparous heifers during mid and/or late-gestation on meat quality and fatty acid profile of progeny. Meat Science, 152(1), 31-37. doi: 10.1016/j.meatsci.2019.02.006 DOI: https://doi.org/10.1016/j.meatsci.2019.02.006
Zago, D., Canozzi, M. E. A., & Barcellos, J. O. J. (2020). Pregnant beef cow’s nutrition and its effects on postnatal weight and carcass quality of their progeny. Plos One, 15(8), e0237941. doi: 10.1371/journal.pone.0237941 DOI: https://doi.org/10.1371/journal.pone.0237941
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.