Propolis in the control of bacterial bovine mastitis: a tool for the production of organic milk

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n2p869

Keywords:

Antiseptic, Mastitis, Microorganisms, Natural, Propolis.

Abstract

Bovine mastitis is one of the main causes of economic damage in dairy farms. Therefore, the control and prevention of microorganisms involved in this disease, mainly Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae, are essential. One of the most important steps for the prevention of the disease is the use of antiseptic products before and after the milking process to avoid bacteria from infecting the udder of the animal. Currently, the most used antiseptic product in dairy farms is iodine-based, and organic dairy farms, which follow several strict regulations, including the use of natural products whenever possible, are often forced to adopt non-natural antiseptic products, such as iodine-based ones, because of the lack of natural alternatives. Propolis, a natural substance produced by honeybees, has been extensively studied for its various properties, one of which is antimicrobial activity. Therefore, a new natural antiseptic product containing 1% propolis in 10% hydroalcoholic solution for the pre-dipping, and 10% glycerol solution added with 0.2% citronella oil for the post-dipping was analyzed for its capacity to reduce bacteria in vivo in order to prevent bovine mastitis, allowing its use on organic dairy farms. A total of 128 samples were analyzed in terms of bacterial growth for Enterobacteriaceae and Staphylococcus spp. using the spread-plate technique. The reduction in the bacterial concentration after the application of the products was compared between two antiseptic solutions, an iodine-based solution as the control and a propolis-based one as the natural alternative. The results obtained show a similar efficiency for both products in terms of total bacterial reduction, indicating considerable antimicrobial activity against bacteria most commonly associated with bovine mastitis. Molecular analysis was carried out for the identification of Streptococcus agalactiae; the PCR results were negative for the presence of S. agalactiae in all samples, indicating that the animals most likely did not have any form of the disease. The efficiency of the natural antiseptic was satisfactory, indicating an important find facilitating organic milk production worldwide, showcasing a natural antiseptic solution with efficient antimicrobial activity.

Downloads

Download data is not yet available.

Author Biographies

Gabriel Michelutti do Nascimento, Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias

Master`s Student in Agropecuary Microbiology Graduate Program, Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, UNESP/FCAV, Jaboticabal, SP, Brazil.

Marita Vedovelli Cardozo, Universidade do Estado de Minas Gerais

Profa in Veterinary Medicine Undergraduate Program, Universidade do Estado de Minas Gerais, UEMG, Passos, MG, Brazil.

Mylena Karoline Valmorbida, Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias

Master in Agropecuary Microbiology, UNESP/FCAV, Jaboticabal, SP, Brazil.

Natália Pereira, Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias

Doctorate Student in Agropecuary Microbiology Graduate Program, UNESP/FCAV, Jaboticabal, SP, Brazil.

José Carlos Barbosa, Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias

Prof. in Agronomy Graduate Program, UNESP/FCAV, Jaboticabal, SP, Brazil.

Flávio Rubens Favaron Júnior, EquineBasic

Quality Control Analyst, EquineBasic, Belo Horizonte, MG, Brazil.

Fernando Antônio de Ávila, Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias

Prof. in Agropecuary Microbiology Graduate Program, UNESP/FCAV, Jaboticabal, SP, Brazil.

References

Adachi, T., Yoshikawa, S., Tezuka, H., Tsuji, N. M., Ohteki, T., Karasuyama, H., & Kumazawa, T. (2019). Propolis induces Ca2+ signaling in immune cells. Bioscience of Microbiota, Food and Health, 38(4), 141-149. doi: 10.12938/bmfh.19-011

Almuhayawi, M. S. (2020). Propolis as a novel antibacterial agent. Saudi Journal of Biological Sciences, 27(11), 3079-3086. doi: 10.1016/j.sjbs.2020.09.016

Ashraf, A., & Imran, M. (2018). Diagnosis of bovine mastitis: from laboratory to farm. Tropical Animal Health and Production, 50(6), 1193-1202. doi: 10.1007/s11250-018-1629-0

Bigliardi, P. L., Alsagoff, S. A. L., El-Kafrawi, H. Y., Pyon, J. K., Wa, C. T. C., & Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44(1), 260-268. doi: 10.1016/j.ijsu.2017.06.073

Búfalo, M. C., Bordon-Graciani, A. P., Conti, B. J., Assis Golim, M. de, & Sforcin, J. M. (2014). The immunomodulatory effect of propolis on receptors expression, cytokine production and fungicidal activity of human monocytes. Journal of Pharmacy and Pharmacology, 66(10), 1497-1504. doi: 10.1111/jphp. 12279

Castro, M. L., Cury, J. A., Rosalen, P. L., Alencar, S. M., Ikegaki, M., Duarte, S., & Koo, H. (2007). Própolis do sudeste e nordeste do Brasil: Influência da sazonalidade na atividade antibacteriana e composição fenólica. Quimica Nova, 30(7), 1512-1516. doi: 10.1590/S0100-40422007000700003

Chiang, Y. C., Pai, W. Y., Chen, C. Y., & Tsen, H. Y. (2008). Use of primers based on the heat shock protein genes hsp70, hsp40, and hsp10, for the detection of bovine mastitis pathogens Streptococcus agalactiae, Streptococcus uberis and Streptococcus bovis. Molecular and Cellular Probes, 22(4), 262-266. doi: 10. 1016/j.mcp.2008.05.004

Dieme, C., Bechah, Y., Socolovschi, C., Audoly, G., Berenger, J. M., Faye, O.,… Parola, P. (2015). Transmission potential of rickettsia felis infection by Anopheles gambiae mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8088-8093. doi: 10.1073/pnas. 1413835112

El Sayed Zaki, M., Bastawy, S., & Montasser, K. (2019). Molecular study of resistance of Staphylococcus aureus to antiseptic quaternary ammonium compounds. Journal of Global Antimicrobial Resistance, 17(1), 94-97. doi: 10.1016/j.jgar.2018.11.022

Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41(3), 430-449. doi: 10.1093/femsre/fux007

Galeotti, F., Maccari, F., Fachini, A., & Volpi, N. (2018). Chemical composition and antioxidant activity of propolis prepared in different forms and in different solvents useful for finished products. Foods, 7(3), 41. doi: 10.3390/foods7030041

Gao, X., Fan, C., Zhang, Z., Li, S., Xu, C., Zhao, Y., Liu, M. (2019). Enterococcal isolates from bovine subclinical and clinical mastitis: antimicrobial resistance and integron-gene cassette distribution. Microbial Pathogenesis, 129(2018), 82-87. doi: 10.1016/j.micpath.2019.01.031

Gomes, F., & Henriques, M. (2016). Control of bovine mastitis: old and recent therapeutic approaches. Current Microbiology, 72(4), 377-382. doi: 10.1007/s00284-015-0958-8

Guzman, J. D. (2014). Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 19(12), 19292-19349. doi: 10.3390/molecules191219292

Heikkilä, A. M., Liski, E., Pyörälä, S., & Taponen, S. (2018). Pathogen-specific production losses in bovine mastitis. Journal of Dairy Science, 101(10), 9493-9504. doi: 10.3168/jds.2018-14824

Htun, H. L., Hon, P. Y., Holden, M. T. G., Ang, B., & Chow, A. (2019). Chlorhexidine and octenidine use, carriage of qac genes, and reduced antiseptic susceptibility in methicillin-resistant Staphylococcus aureus isolates from a healthcare network. Clinical Microbiology and Infection, 25(9), 1154.e1-1154.e7. doi: 10. 1016/j.cmi.2018.12.036

Ignak, S., Nakipoglu, Y., & Gurler, B. (2017). Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey. Antimicrobial Resistance and Infection Control, 6(1), 66-68. doi: 10.1186/s13756-017-0244-6

Jang, S. (2016). Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. Journal of Microbiology, 54(1), 1-8. doi: 10.1007/s12275-016-5159-z

Kampf, G. (2018). Adaptive microbial response to low-level benzalkonium chloride exposure. Journal of Hospital Infection, 100(3), e1-e22. doi: 10.1016/j.jhin.2018.05.019

Kongkaew, C., Sakunrag, I., Chaiyakunapruk, N., & Tawatsin, A. (2011). Effectiveness of citronella preparations in preventing mosquito bites: Systematic review of controlled laboratory experimental studies. Tropical Medicine and International Health, 16(7), 802-810. doi: 10.1111/j.1365-3156.2011.027 81.x

Kuramae, E. (2008). A rapid, easy and high yield protocol for total genomic dna isolation of Colletotrichum gloeosporioides and Fusarium oxysporum. Revista Universidade Estadual de Maringá, 19(3), 683-689. Retrieved from https://www.researchgate.net/publication/277153225

LaBreck, P. T., Bochi-Layec, A. C., Stanbro, J., Dabbah-Krancher, G., Simons, M. P., & Merrell, D. S. (2020). Systematic analysis of efflux pump-mediated antiseptic resistance in Staphylococcus aureus suggests a need for greater antiseptic stewardship. MSphere, 5(1), e00959-19. doi: 10.1128/msphere.00959-19

Lakew, B. T., Fayera, T., & Ali, Y. M. (2019). Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia. Tropical Animal Health and Production, 51(6), 1507-1513. doi: 10.1007/s11250-019-01838-w

Lopes, M. A., Demeu, F. A., Rocha, C. M. B. M. da, Costa, G. M. da, Franco, A., Neto, & Santos, G. dos. (2012). Avaliação do impacto econômico da mastite em rebanhos bovinos leiteiros. Arquivos do Instituto Biológico, 79(4), 477-483. doi: 10.1590/s1808-16572012000400003

Ministério da Agricultura, Pecuária e Abastecimento (2011). Instrução Normativa no 46, de 6 de outubro de 2011. Regulamento Técnico para os Sistemas Orgânicos de Produção Animal e Vegetal. Diário Oficial da União, Brasília, DF, 7 out. 2011, Seção 1, 4-12.

Ministério da Agricultura, Pecuária e Abastecimento (2018). Instrução Normativa n°76, de 26 de novembro de 2018. Regulamento Técnico de Identidade e Qualidade de Leite Cru Refrigerado. Diário Oficial da União, Brasília, DF, 26 Nov. 2018, Seção 1, 1-9.

McDornell, G., & Denver Russell, A. (1999). Antiseptics and disinfectants : acitivity action, and resistaance. Clinical Microbioloy Reviews, 12(1), 147-179. doi: 10.1128/CMR.12.1.147

Monistero, V., Graber, H. U., Pollera, C., Cremonesi, P., Castiglioni, B., Bottini, E.,... Moroni, P. (2018). Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins, 10(6), 247. doi: 10.3390/toxins10060247

Pina, R., Silva, D., Aparecida, B., Machado, S., De, G., Barreto, A.,… Umsza-guez, M. A. (2017). Cytotoxic properties of various Brazilian propolis extracts. PLoS ONE, 12(3), 1-18. doi:10.1371/journal.pone.0172 585

Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 306(2), 530-536. doi: 10.1016/S0006-291X(03)01006-4

Prybylek, I., & Karpinski, T. M. (2019). Antibacterial properties of propolis. Molecules, 24(11), 11-13. doi: 10.3390/molecules24112047

Ruegg, P. L. (2017). A 100 year review: mastitis detection, management, and prevention. Journal of Dairy Science, 100(12), 10381-10397. doi: 10.3168/jds.2017-13023

Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research, 30(6), 894-905. doi: 10.1002/ptr.5605

Tsai, Y. C., Wang, Y. H., Liou, C. C., Lin, Y. C., Huang, H., & Liu, Y. C. (2012). Induction of oxidative DNA damage by flavonoids of propolis: Its mechanism and implication about antioxidant capacity. Chemical Research in Toxicology, 25(1), 191-196. doi: 10.1021/tx200418k

Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: a review. Microbial Pathogenesis, 120(1), 198-203. doi: 10.1016/j.micpath.2018.04.036 .

Veiga, R. S., Mendonça, S. de, Mendes, P. B., Paulino, N., Mimica, M. J., Lagareiro, A. A., Netto,... Marcucci, M. C. (2017). Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. Journal of Applied Microbiology, 122(4), 911-920. doi: 10.1111/jam.13400

Veloz, J. J., Alvear, M., & Salazar, L. A. (2019). Antimicrobial and antibiofilm activity against Streptococcus mutans of individual and mixtures of the main polyphenolic compounds found in chilean propolis. BioMed Research International, 2019(1), 1-7. doi: 10.1155/2019/7602343

Verspecht, T., Rodriguez Herrero, E., Khodaparast, L., Khodaparast, L., Boon, N., Bernaerts, K.,… Teughels, W. (2019). Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. Scientific Reports, 9(1), 1-13. doi: 10.1038/s41598-019-44822-y

Yoshimasu, Y., Ikeda, T., Sakai, N., Yagi, A., Hirayama, S., Morinaga, Y.,… Nakao, R. (2018). Rapid bactericidal action of propolis against Porphyromonas gingivalis. Journal of Dental Research, 97(8), 928-936. doi: 10.1177/0022034518758034

Downloads

Published

2022-02-25

How to Cite

Nascimento, G. M. do, Cardozo, M. V., Valmorbida, M. K., Pereira, N., Barbosa, J. C., Favaron Júnior, F. R., & Ávila, F. A. de. (2022). Propolis in the control of bacterial bovine mastitis: a tool for the production of organic milk. Semina: Ciências Agrárias, 43(2), 869–882. https://doi.org/10.5433/1679-0359.2022v43n2p869

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.