Growing Coffea canephora in agroforestry systems with Brazilian firetree, Brazil nut, and teak

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n1p49

Keywords:

Amazon, Planting densities, Conilon, Schizolobium parahyba, Bertholletia excelsa, Tectona grandis.

Abstract

Planting coffee in agroforestry systems (AFSs) provides diverse advantages to farmers interested in producing environmental services, such as increased local biodiversity, reduction in soil erosion, improvement in water infiltration into the soil, and regulation of climate extremes. It can also be economically attractive due to the possibility of serving alternative markets that have higher and more stable prices for coffees integrated into alternative systems and the generation of products complementary to coffee. This study aimed to evaluate the effects of different planting densities of three forest species on the composition of AFSs with coffee plants under the conditions of the southwestern Amazon region. The study was conducted from November 2014 to June 2021 in the experimental field of Embrapa in Ouro Preto do Oeste, RO, Brazil. The coffee plants were intercropped with three forest species: i) Brazilian firetree (Schizolobium parahyba var. amazonicum), ii) Brazil nut (Bertholletia excelsa), and iii) teak (Tectona grandis). The treatments used in each experiment were four plant densities of plants: zero (coffee plants only, in full sun), 111 plants ha−1 (10 × 9 m), 222 plants ha−1 (10 × 4.5 m), and 444 plants ha−1 (5 × 4.5 m). The experiments were conducted in a split-plot arrangement, with plots consisting of plant densities and subplots consisting of harvest periods (crop seasons). The experimental design was completely randomized, with nine replications. The part of the plot used for data collection consisted of one planted row with 12 coffee plants. The average and accumulated productivities of coffe plants were evaluated over five harvests (2017-2021). Afforestation of the coffee field with Brazilian firetree plants reduces the mean yield and cumulative yield of C. canephora ‘Conilon’ in the first five commercial crop years. Brazil nut and teak planted at densities of up to 222 trees per hectare did not lead to a reduction in the mean and cumulative yield of coffee plants.

Downloads

Download data is not yet available.

Author Biographies

Sirlene Brasil de Oliveira Bezerra, Universidade Federal de Rondônia

Student of the Master's Course of the Postgraduate Program in Conservation and Use of Natural Resources, Fundação Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.

 

Larissa Fatarelli Bento de Araújo, Fundação Universidade Federal de Rondônia

Profa. Dra., Postgraduate Program in Conservation and Use of Natural Resources, UNIR, Porto Velho, RO, Brazil.

Rogerio Sebastião Correa da Costa, Empresa Brasileira de Pesquisa Agropecuária

Researcher, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, Porto Velho, RO, Brazil.

Victor Ferreira de Souza, Empresa Brasileira de Pesquisa Agropecuária

Researcher, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, Porto Velho, RO, Brazil.

Rodrigo Barros Rocha, Empresa Brasileira de Pesquisa Agropecuária

Researcher, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, Porto Velho, RO, Brazil.

Marcela Campanharo, Fundação Universidade Federal de Rondônia

Profa. Dra., Department of Biology, UNIR, Porto Velho, RO, Brazil.

Marcelo Curitiba Espindula, Empresa Brasileira de Pesquisa Agropecuária

Researcher, EMBRAPA, Vitória, ES, Brazil.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507

Arango, P. C. Z. (2019). Composición y estructura del dosel de sombra en sistemas agroforestales con café de tres municipios de Cundinamarca, Colombia. Ciência Florestal, 29(2), 685-697. doi: 10.5902/1980509827037 DOI: https://doi.org/10.5902/1980509827037

Araújo, L. F. B. de., Espindula, M. C., Rocha, R. B., Torres, J. D., Campanharo, M., Pego, W. F. O., & Rosa, S. E. S. (2021). Genetic divergence based on leaf vegetative and anatomical traits of Coffea canephora clones. Semina: Ciências Agrárias, 42(5), 2717-2734. doi: 10.5433/1679-0359.2021v42n5p2717 DOI: https://doi.org/10.5433/1679-0359.2021v42n5p2717

Baliza, D. P., Cunha, R. L., Castro, E. M., Barbosa, J. P. R. A. D., Pires, M. F., & Gomes, R. A. (2012). Trocas gasosas e características estruturais adaptativas de cafeeiros cultivados em diferentes níveis de radiação. Coffee Science, 7(3), 250-258. DOI: https://doi.org/10.5039/agraria.v7i1a1305

Carvalho, M., Machado, R. C. R., Ahnert, D., Sodré, G. A., & Sacramento, C. K. (2013). Avaliação da composição e distribuição mineral em componentes foliares de paricá (Schizolobium amazonicum Huber ex Ducke). Agrotrópica, 25(1), 53-60. doi: 10.21757/0103-3816.2013v25n1p53-60 DOI: https://doi.org/10.21757/0103-3816.2013v25n1p53-60

Chaiya, L., Gavinlertvatana, P., Teaumroong, N., Pathom-aree, W., Chaiyasen, A., Sungthong, R., & Lumyong, S. (2021). Enhancing teak (Tectona grandis) seedling growth by rhizosphere microbes: a sustainable way to optimize agroforestry. Microorganisms, 9(9), 1-16. doi: 10.3390/microorganisms9091990 DOI: https://doi.org/10.3390/microorganisms9091990

Cordeiro, M. C., Oliveira, M. C. M. de, Jr., Batista-Gazel, A., Fº., Barros, P. L. C. de, Alves, L. O., & Oliveira, F. de A. (2016). Growth of Schizolobium parahyba var. Amazonicum cropping in presence of Ananas comosus var. Erectifolius in Para state, Brazil. Agrociència, 50(1), 79-88.

Correia, R. M., Andrade, R., Tosato, F., Nascimento, M. T., Pereira, L. L., Araújo, J. B. S., Pintoa, F. E., Endringerd, D. C., Padovanc, M. P., Castro, E. V. R., Partelli, F. L., Filgueiras, P. R., Lacerda, V., Jr., & Romão, W. (2020). Analysis of Robusta coffee cultivated in agroforestry systems (AFS) by ESI-FT-ICR MS and portable NIR associated with sensory analysis. Journal of Food Composition and Analysis, 94(1), 1-10. doi: 10.1016/j.jfca.2020.103637 DOI: https://doi.org/10.1016/j.jfca.2020.103637

Costa, M. C. F., Oliveira, G. B. S., Modro, A. F. H., Morais, F. F., Evaristo, A. P., & Souza, E. F. M. (2018). Agrobiodiversidade de sistemas agroflorestais com cafeeiro na Amazônia ocidental. Revista Ibero Americana de Ciências Ambientais, 9(2), 84-93. doi: 10.6008/CBPC2179-6858.2018.002.0008 DOI: https://doi.org/10.6008/CBPC2179-6858.2018.002.0008

Costa, M. G., Tonini, H., & Mendes F. P. (2017). Atributos do solo relacionados com a produção da castanheira-do-brasil (Bertholletia excelsa). Floresta e Ambiente, 24(1), e20150042. doi: 10.1590/2179-8087.004215 DOI: https://doi.org/10.1590/2179-8087.004215

Ehrenbergerová, L., Septunová, Z., Habrová, H., Tuesta, R. H. P., & Matula, R. (2019). Shade tree timber as a source of income diversification in agroforestry coffee plantations, Peru. Bois et Forêts des Tropiques, 342(4), 93-103. doi: 10.19182/bft2019.342.a31812 DOI: https://doi.org/10.19182/bft2019.342.a31812

Espindula, M. C., Pinheiro, J. O. C., Cararo, D. C., Silva, E. B., Diocleciano, J. M., Rosa, C., Neto, & Franca, R. M. (2022). Desempenho agronômico e análise econômica do cultivo de cafeeiros clonais no estado do Amazonas. (Circular Técnica, 153). EMBRAPA Rondônia.

Espindula, M. C., Schmidt, R., Verdin, A. C., Fº., Fonseca, A. F. A., & Dias, J. R. M. (2016). Poda de formação em cafeeiros Coffea canéfora. (Comunicado Técnico, 405). EMBRAPA Rondônia.

Espindula, M. C., Tavella, L. B., Schmidt, R., Rocha, R. B., Dias, J. R. M., Bravin, M. P., & Partelli, F. L. (2021). Yield of robusta coffee in different spatial arrangements. Pesquisa Agropecuária Brasileira, 56(1), e02516. doi: 10.1590/S1678-3921.pab2021.v56.02516 DOI: https://doi.org/10.1590/s1678-3921.pab2021.v56.02516

Freitas, A. F. de., Nadaleti, D. H. S., Silveria, H. R. de O., Carvalho, G. R., Venturin, R. P., & Silva, V. A. (2020). Productivity and beverage sensory quality of arabica coffee intercropped with timber species. Pesquisa Agropecuária Brasileira, 55(1), e02240. doi: 10.1590/S1678-3921. pab2020.v55.02240 DOI: https://doi.org/10.1590/s1678-3921.pab2020.v55.02240

Gomes, J. M., Silva, J. C. F., Vieira, S. B., Carvalho, J. O. P., Oliveira, L. C. L. Q., & Queiroz, W. T. (2019). Schizolobium parahyba var. amazonicum (Huber ex Ducke) Barneby pode ser utilizada em enriquecimento de clareiras de exploração florestal na Amazônia. Ciência Florestal, 29(1), 417-424. doi: 10.5902/198050984793 DOI: https://doi.org/10.5902/198050984793

Gomes, L. C., Bianchi, F. J. J. A., Cardoso, I. M., Fernandes, R. B. A., Fernandes, E. I., Fº., & Schulte, R. P. O. (2020). Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agriculture, Ecosystems & Environment, 294(1), e106858. doi: 10. 1016/j.agee.2020.106858 DOI: https://doi.org/10.1016/j.agee.2020.106858

Henrique, N. S., Maltoni, K. L., & Faria, G. A. (2020). Soil quality in two coffee crop systems in the Amazon biome. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(6), 379-384. doi: 10.1590/1807-1929/agriambi.v24n6p379-384 DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n6p379-384

Henrique, N. S., Maltoni, K. L., & Faria, G. A. (2022). Litterfall decomposition of coffee shaded with Tectona grandis or in full sun. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(2), 91-96. doi: 10.1590/1807-1929/agriambi.v26n2p91-96 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n2p91-96

Jácome, M. G. O., Mantovani, J. R., Silva, A. B. da, Rezende, T. T., & Landgraf, P. R. C. (2020). Soil attributes and coffee yield in an agroforestry system. Coffee Science, 15(1), e151676. doi: 10.25186/.v15i.1676 DOI: https://doi.org/10.25186/.v15i.1676

Marcolan, A. L., & Espindula, M. C. (2015). Café na Amazônia. EMBRAPA Brasília. http://www.alice.cnptia. embrapa.br/alice/handle/doc/1023755

Martins, E. O., Luz, J. M. R. da, Oliveira, E. C. S., Guarçoni, R. C., Moreira, T. R., Moreli, A. P., Siqueira, E. A., Silva, M. C. S. da, Costa, M. R. G. F., & Pereira, L. L. (2023). Chemical profile and sensory perception of coffee produced in agroforestry management. European Food Research and Technology, 249(1), 1479-1489. doi: 10.1007/s00217-023-04228-7 DOI: https://doi.org/10.1007/s00217-023-04228-7

Midgley, S., Somaiya, R. T., Stevens, P. R., Brown, A., Nguyen, D. K., & Laity, R. (2015). Planted teak: global production and markets, with reference to Solomon Islands. Australian Centre for International Agricultural Research: ACIAR Technical Reports.

Moreira, S. L. S., Pires, C. V., Marcatti, G. E., Santos, R. H. S., Imbuzeiro, H. M. A., & Fernandes, R. B. A. (2018). Intercropping of coffee with the palm tree, macauba can mitigate climate change effects. Agricultural and Forest Meteorology, 256-257(1), 379-390. doi: 10.1016/j.agrformet.2018.03.026 DOI: https://doi.org/10.1016/j.agrformet.2018.03.026

Nunes, A. L. P., Cortez, G. L. S., Zaro, G. C., Zorzenoni, T. O., Melo, T. R., Figueiredo, A., Aquino, G. S. de, Medina, C. C., Ralisch, R., Caramori, P. H., & Guimarães, M. F. (2021). Soil morphostructural characterization and coffee root distribution under agroforestry system with Hevea Brasiliensis. Scientia Agricola, 78(6), e20190150. doi: 10.1590/1678-992X-2019-0150 DOI: https://doi.org/10.1590/1678-992x-2019-0150

Oliosi, G., Giles, J. A. D., Rodrigues, W. P., Ramalho, J. C., & Partelli, F. L. (2016). Microclimate and development of Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar (Toona ciliata M. Roem. var. Australis). Australian Journal of Crop Science, 10(4), 528-538. doi: 10.21475/ajcs.2016.10.04. p7295x DOI: https://doi.org/10.21475/ajcs.2016.10.04.p7295x

Olivas, D. B. L., Tomaz, M. A., Amaral, J. F. T. do, Oliveira, F. L. de, Cavatte, P. C., Christo, B. F., Rodrigues, W. N., Martins, L. D., & Vargas, A. D. (2023). Impact of intercropping on the photosynthetic activity of coffee. Semina: Ciências Agrárias, 44(2), 721-738. doi: 10.5433/1679-0359.2023v44n2p721 DOI: https://doi.org/10.5433/1679-0359.2023v44n2p721

Oliveira, R. G., Souza, A. S., Santos, V. A. H. F., Lima, R. M. B., & Ferreira, M. J. (2021). Long-term effects of plant spacing on the growth and morphometry of Bertholletia excelsa. Acta Amazônica, 51(3), 181-190. doi: 10.1590/1809-4392202003611 DOI: https://doi.org/10.1590/1809-4392202003611

Pezzopane, J. R. M., Marsetti, M. M. S., Ferrari, W. R., & Pezzopane, J. E. M. (2011). Alterações microclimáticas em cultivo de café conilon arborizado com coqueiro-anão-verde. Revista Ciência Agronômica, 42(4), 865-871. doi: 10.1590/S1806-66902011000400007 DOI: https://doi.org/10.1590/S1806-66902011000400007

Pezzopane, J. R. M., Marsetti, M. M. S., Souza, J. M., & Pezzopane, J. E. M. (2010). Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadâmia. Ciência Rural, 40(6), 1-7. doi: 10.1590/S0103-84782010005000098 DOI: https://doi.org/10.1590/S0103-84782010005000098

Piato, K., Subía, C., Lefort, F., Pico, J., Calderón, D., & Norgrove, L. (2022). No reduction in yield of young robusta coffee when grown under shade trees in ecuadorian Amazonia. Life, 12(6), 1-18. doi: 10.3390/life12060807 DOI: https://doi.org/10.3390/life12060807

Rocha, R. B., Vieira, D. S., Ramalho, A. R., & Teixeira, A. L. (2013). Caraterização e uso da variabilidade genética do banco ativo de germoplasma de Coffea canephora Pierre ex Froehner. Coffee Science, 8(4) 478-485.

Scoles, R., Gribel, R., & Klein, G. N. (2011). Crescimento e sobrevivência de castanheira (Bertholletia excelsa Bonpl.) em diferentes condições ambientais na região do rio Trombetas, Oriximiná, Pará. Boletim do Museu Paraense Emílio Goeldi Ciências Naturais, 6(3), 273-293. DOI: https://doi.org/10.46357/bcnaturais.v6i3.610

Silva, A. K. L., Vasconcelos, S. S., Carvalho, C. J. R., & Cordeiro, I. M. C. C. (2011). Litter dynamics and fine root production in Schizolobium parahyba var. Amazonicum plantations and regrowth forest in Eastern Amazon. Plant Soil, 347(1), 377-386. doi: 10.1007/s11104-011-0857-0 DOI: https://doi.org/10.1007/s11104-011-0857-0

Silva, C. S., Silva, L. M., Wadt, L. H. O., Miqueloni, D. P., Silva, K. E., & Pereira, M. G. (2021). Soil classes and properties explain the occurrence and fruit production of Brazil nut. Revista Brasileira Ciência do Solo, 45(1), e0200188. doi: 10.36783/18069657rbcs20210001 DOI: https://doi.org/10.36783/18069657rbcs20210001

Souza, T. S., Almeida, R. F., & Berilli, S. S. (2019). Efeito do sombreamento na qualidade da bebida de café conilon cultivadoem sistemas consorciados. Revista Brasileira de Ciências Agrárias, 14(4), e5782. doi: 10.5039/agraria.v14i4a5782 DOI: https://doi.org/10.5039/agraria.v14i4a5782

Teixeira, A. L., Rocha, R. B., Espindula, M. C., Ramalho, A. R., Vieira, J. R., Jr., Alves, E. A., Lunz, A. M. P., Souza, F. F., Costa, J. N. M., & Fernandes, C. F. (2020). Amazonian Robustas - new Coffea canephora coffee cultivars for the Western Brazilian Amazon. Crop Breeding and Applied Biotechnology, 20(3), e323420318. doi: 10.1590/1984-70332020v20n3c53 DOI: https://doi.org/10.1590/1984-70332020v20n3c53

Torres, J. D., Araújo, L. F. B., Espindula, M. C., Campanharo, M., & Rocha, R. B. (2022). Export of macronutrients for coffee fruits submitted to different doses of formulation 20-00-20. Journal of Plant Nutriton, 45(18), 1-11. doi: 10.1080/01904167.2022.2027975 DOI: https://doi.org/10.1080/01904167.2022.2027975

Torrez, V., Benavides‑Frias, C., Jacobi, J., & Speranza, C. I. (2023). Ecological quality as a coffee quality enhancer. A review. Agronomy for Sustainable Development, 431(19), 2-34. doi: 10.1007/s13593-023-00874-z DOI: https://doi.org/10.1007/s13593-023-00874-z

Trevisan, E., Oliveria, M. G.,Valani, G. P., Oliosi, G., Zucoloto, M., Bonomo, R., & Partelli, F. L. (2022). Microclimate and development of Coffea canephora intercropped with Carica papaya: measures to mitigate climate change. Bioscience Journal, 38(1), e38094. doi: 10.14393/BJ-v38n0a2022-57099 DOI: https://doi.org/10.14393/BJ-v38n0a2022-57099

Verdin, A. C., Fº., Tomaz, M. A., Ferrão, R. G., Ferrão, M. A. G., Fonseca, A. F. A., & Rodrigues, W. N. (2014). Conilon coffee yield using the programmed pruning cycle and different cultivation densities. Coffee Science, 9(4), 489-494.

Verdin, A. C., Fº., Volpi, P. S., Ferrao, M. A. G., Ferrao, R. G., Mauri, A. L., Fonseca, A. F. A., & Andrade, S. (2016). New management technology for arabica coffee: the cyclic pruning program for arabica coffee. Coffee Science, 11(4), 475-483.

Vidaurre, G. B., Vital, B. R., Oliveira, A. C., Oliveira, J. T. S., Moulin, J. C., Silva, J. G. M., & Soranso, D. R. (2018). Physical and mechanical properties of juvenile Schizolobium amazonicum wood. Revista Árvore, 42(1), e420101. doi: 10.1590/1806-90882018000100001 DOI: https://doi.org/10.1590/1806-90882018000100001

Zaro, G. C., Caramori, P. H., Wrege, M. S., Caldana, N. F. da S., Virgens, J. S. das, Fº., Morais, H., Yada, G. M., Jr., & Caramori, D. C. (2023). Coffee crops adaptation to climate change in agroforestry systems with rubber trees in southern Brazil. Scientia Agricola, 80(1), e20210142. doi: 10.1590/1678-992X-2021-0142 DOI: https://doi.org/10.1590/1678-992x-2021-0142

Zaro, G. C., Caramori, P. H., Yada, G. M., Jr., Sanquetta, C. R., Androcioli, A., Fº., Nunes, A. L. P., Prete, C. E. C., & Voroney, P. (2020). Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry Systems, 94(1), 799-809. doi: 10.1007/s10457-019-00450-z DOI: https://doi.org/10.1007/s10457-019-00450-z

Downloads

Published

2024-02-10

How to Cite

Bezerra, S. B. de O., Araújo, L. F. B. de, Costa, R. S. C. da, Souza, V. F. de, Rocha, R. B., Campanharo, M., & Espindula, M. C. (2024). Growing Coffea canephora in agroforestry systems with Brazilian firetree, Brazil nut, and teak. Semina: Ciências Agrárias, 45(1), 49–70. https://doi.org/10.5433/1679-0359.2024v45n1p49

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.