Mechanical evaluation of brazilian locking bone plates for veterinary use

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n3p991

Keywords:

Orthopedics, Osteosynthesis, Implants, Biomechanics.

Abstract

Several surgical implants have been developed to stabilize fractures in humans and animals. Osteosynthesis with Locking Compression Plate (LCP) is a widely used fixation method for the treatment of fractures, angular deviations, arthrodesis, among other surgical techniques. This implant,  combined with bone screws, stands out as one of the most used by veterinary orthopedists in Brazil and worldwide. Thus, the present study aims to compare the static and dynamic compressive strength of F138 stainless steel  and F67 titanium LCPs from different manufacturers. Four models of Brazilian-made veterinary LCPs were mechanically tested, divided into four groups (G) with fourteen items each, where G1 and G2 consisted of F138 stainless steel LCPs and G3 and G4 of F67 titanium LCPs. Tests were conducted according to the method described in ABNT NBR 15676-2 for static testing and ABNT NBR 15676-3 for dynamic testing. Statistical analysis detected differences in the static compression test. G2 showed better stiffness and strength than G1, whose stiffness and strength were, in turn, greater than G3 and G4. By contrast, no differences were observed between G3 and G4. Differences were detected for dynamic compression testing, obtaining the same results as static testing, that is, G2 exhibited higher maximum moment and cyclic strength than G1, which showed a higher maximum moment and cyclic strength than G3 and G4. Similarly, there was no difference between G3 and G4. Thus, it was concluded that F138 stainless steel compression plates displayed greater static and cyclic strength when compared to F67 titanium plates. Additionally, there were significant differences in the static and cyclic strength tests of the G1 and G2 compression plates, which have similar raw material composition (F138 stainless steel), albeit with statistically different results.

Author Biographies

Guilherme Dallago Pioczcovski, Universidade Federal da Fronteira Sul

Veterinarian, M.e in Animal Health, Welfare and Production, Graduate Animal Health, Welfare and Production Program, Universidade Federal da Fronteira Sul, UFFS, Realeza, PR, Brazil.

João Felipe da Silva Mielke, Universidade Federal da Fronteira Sul

Discente do Curso de Graduação em Medicina Veterinária, UFFS, Realeza, PR, Brazil.

Vitor Angelo Musial, Universidade Federal da Fronteira Sul

Discente do Curso de Graduação em Medicina Veterinária, UFFS, Realeza, PR, Brazil.

Gentil Ferreira Gonçalves, Universidade Federal da Fronteira Sul

Prof., Undergraduate Veterinary Medicine Course, UFFS, Realeza, PR, Brazil.

References

Agência Brasileira de Normas Técnicas (2017a). NBR 15676-1, implantes para ortopedia - placas ósseas metálicas - Parte 1: requisitos. ABNT.

Agência Brasileira de Normas Técnicas (2017b). NBR 15676-2, implantes para ortopedia - placas ósseas metálicas - Parte 2: método de ensaio de flexão estática. ABNT.

Agência Brasileira de Normas Técnicas (2017c). NBR 15676-3, implantes para ortopedia - placas ósseas metálicas - Parte 3: método de ensaio dinâmico de flexão. ABNT.

Barber, C. C., Burnham, M., Ojameruaye, O., & McKee, M. D. (2021). A systematic review of the use of titanium versus stainless steel implants for fracture fixation. OTA International: the Open Access Journal of Orthopaedic Trauma, 4(3), e138. doi: 10.1097/OI9.0000000000000138 DOI: https://doi.org/10.1097/OI9.0000000000000138

Cordey, J. (2000). Introduction: basic concepts and definitions in mechanics. Injury, 31(Suppl. 2), 1-84. doi: 10.1016/s0020-1383(00)80039-x DOI: https://doi.org/10.1016/S0020-1383(00)80039-X

Cruz-Pinto, C. E., Stopiglia, A. J., Matera, J. M., & Arnoni, F. I. (2015). Casuistic analysis of surgical diseases in the small animal surgery sector of FMVZ-USP from 1988 to 2007. Brazilian Journal of Veterinary Research and Animal Science, 52(1), 41-47. doi: 10.11606/issn.1678-4456.v52i1p41-47 DOI: https://doi.org/10.11606/issn.1678-4456.v52i1p41-47

Dalmolin, F., Pinto, S. T. L., Fº., Cortes, A. M., Brun, M. V., Cauduro, C. R., & Schossler, J. E. W. (2013). Biomecânica óssea e ensaios biomecânicos: fundamentos teóricos. Ciência Rural, 43(9), 1675-1682. doi: 10.1590/S0103-84782013000900022 DOI: https://doi.org/10.1590/S0103-84782013000900022

Fossum, T. W., Schulz, K. S., Hayashi, K. (2019). Principles of fracture diagnosis and management. In T. W. Fossum (Ed.), Small Animal Surgery (5rd ed.). United States.

Hak, D. J., Banegas, R., Ipaktchi, K., & Mauffrey, C. (2018). Evolution of plate design and material composition. Injury, 49, S8-S11. doi:10.1016/s0020-1383(18)30295-x DOI: https://doi.org/10.1016/S0020-1383(18)30295-X

Hammel, S. P., Elizabeth Pluhar, G., Novo, R. E., Bourgeault, C. A., & Wallace, L. J. (2006). Fatigue analysis of plates used for fracture stabilization in small dogs and cats. Veterinary Surgery, 35(6), 573-578. doi: 10.1111/j.1532-950X.2006.00191.x DOI: https://doi.org/10.1111/j.1532-950X.2006.00191.x

Kanchanomai, C., Phiphobmongkol, V., & Muanjan, P. (2008). Fatigue failure of an orthopedic implant - a locking compression plate. Engineering Failure Analysis, 15(5), 521-530. doi: 10.1016/j.engfailanal.2007.04.001 DOI: https://doi.org/10.1016/j.engfailanal.2007.04.001

Mariani, T. C. (2010). Ensaios biomecânicos de placas bloqueadas: comportamento dos parafusos bloqueados em diferentes angulações submetidos ao teste de arrancamento e influência do preenchimento dos orifícios médios na resistência ao teste de flexão. Dissertação de mestrado, Universidade de São Paulo, São Paulo, SP, Brasil.

Marshall, T., Momaya, A., Eberhardt, A., Chaudhari, N., & Hunt, T. R. (2015). Biomechanical comparison of volar fixed-angle locking plates for AO C3 distal radius fractures: titanium versus stainless steel with compression. The Journal of Hand Surgery, 40(10), 2032-2038. doi: 10.1016/j.jhsa.2015.06.098 DOI: https://doi.org/10.1016/j.jhsa.2015.06.098

Mesquita, L. R., Rahal, S. C., Mesquita, C., Kano, W. T., Beato, A. C., Faria, L. G., & Castilho, M. S. (2017). Development and mechanical properties of a locking T-plate. Pesquisa Veterinária Brasileira, 37(5), 495-501. doi: 10.1590/S0100-736X2017000500012 DOI: https://doi.org/10.1590/s0100-736x2017000500012

Mugnai, R., Tarallo, L., Capra, F., & Catani, F. (2018). Biomechanical comparison between stainless steel, titanium and carbon-fiber reinforced polyetheretherketone volar locking plates for distal radius fractures. Orthopaedics & Traumatology, Surgery & Research, 104(6), 877-882. doi: 10.1016/j.otsr.2018.05.002 DOI: https://doi.org/10.1016/j.otsr.2018.05.002

Piermattei, D. L., Flo, G. L., & Decamp, C. (2015). Handbook of small animal orthopedics and fracture repair (5nd ed.). Elsevier.

Souer, J. S., Ring, D., Matschke, S., Audige, L., Maren-Hubert, M., & Jupiter, J. (2010). Comparison of functional outcome after volar plate fixation with 2.4-mm titanium versus 3.5-mm stainless-steel plate for extra-articular fracture of distal radius. The Journal of Hand Surgery, 35(3), 398-405. doi: 10.1016/j.jhsa.2009.11.023 DOI: https://doi.org/10.1016/j.jhsa.2009.11.023

Tobias, K. M., & Johnston, S. A. (2017). Veterinary surgery: small animal (2nd ed.). Elsevier.

Downloads

Published

2024-06-13

How to Cite

Pioczcovski, G. D., Mielke, J. F. da S., Musial, V. A., & Gonçalves, G. F. (2024). Mechanical evaluation of brazilian locking bone plates for veterinary use. Semina: Ciências Agrárias, 45(3), 991–1006. https://doi.org/10.5433/1679-0359.2024v45n3p991

Issue

Section

Articles

Most read articles by the same author(s)