Echocardiography and 3D printing: cardiac models for the education of dog owners
DOI:
https://doi.org/10.5433/1679-0359.2023v44n2p881Keywords:
3D printing, Anatomical heart, Echocardiography, Three-dimensional model, Veterinary medicine.Abstract
Three-dimensional (3D) printing is a new method for creating human and veterinary anatomical models, which makes the education of students and professionals in the health area more complete, in addition to helping the patients themselves understand. In the area of cardiology, this technique can efficiently help the assessment of cardiac alterations for the patient during medical consultations, tying a feeling of involvement with the medical team. Likewise, it is possible to use 3D printing to understand the echocardiographic technique, where conceptual knowledge of the anatomy of the heart and the ability to translate a two-dimensional ultrasound image into a 3D idea is required. This research aimed to develop printable 3D cardiac models, to demonstrate cardiac sections used in echocardiography and use them to teach dog owners, evaluating their suitability as a tool for a better understanding of the echocardiographic exam. The 3D cardiac models were validated by dog owners through an evaluation questionnaire prepared on a Likert scale, after monitoring the echocardiographic examination with an explanation by the echocardiographer using the printed models. A total of 30 dog owners participated in the study. In all seven questions of the questionnaire, the vast majority of positive responses were observed, with partial or total agreement by the participants. These results showed that the use of 3D printed models is effective in improving the understanding of the echocardiographic examination and is feasible in the daily workflow.
Downloads
References
Anwar, S., Singh, G. K., Miller, J., Sharma, M., Manning, P., Billadello, J. J., Eghtesady, P., & Woodard, P. K. (2018). 3D printing is a transformative technology in congenital heart disease. JACC: Basic to Translational Science, 3(2), 294-312. doi: 10.1016/j.jacbts.2017.10.003 DOI: https://doi.org/10.1016/j.jacbts.2017.10.003
Awori, J., Friedman, S. D., Chan, T., Howard, C., Seslar, S., Soriano, B. D., & Buddhe, S. (2021). 3D models improve understanding of congenital heart disease. 3D Printing in Medicine, 7(1), 26. doi: 10.1186/s41205-021-00115-7 DOI: https://doi.org/10.1186/s41205-021-00115-7
Biglino, G., Capelli, C., Wray, J., Schievano, S., Leaver, L., Khambadkone, S., Giardini, A., Derrick, G., Jones, A., & Taylor, A. (2015). 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open, 5(4), e007165. doi: 10.1136/bmjopen-2014-007165 DOI: https://doi.org/10.1136/bmjopen-2014-007165
Borgeat, K., Shearn, I. U. A., Payne, J. R., Hezzell, M., & Biglino, G. (2022). Three-dimensional printed models of the heart represent an opportunity for inclusive learning. The Journal of Veterinary Medical Education, 49(3), 346-352. doi: 10.3138/jvme-2020-0141 DOI: https://doi.org/10.3138/jvme-2020-0141
George, D. K., Ty, M. C., Rick, S., Jillian, K., & Robert, M. G. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. The Journal of Higher Education, 79(5), 540-563. doi: 10.1353/jhe.0.0019 DOI: https://doi.org/10.1353/jhe.0.0019
Gosnell, J., Pietila, T., Samuel, B. P., Kurup, H. K. N., Haw, M. P., & Vettukattil, J. J. (2016). Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. The Journal of Digital Imaging, 29(6), 665-669. doi: 10.1007/s10278-016-9879-8 DOI: https://doi.org/10.1007/s10278-016-9879-8
Kiraly, L., Kiraly, B., Szigeti, K., Tamas, C. Z., & Daranyi, S. (2019). Virtual museum of congenital heart defects: digitization and establishment of a database for cardiac specimens. Quantitative Imaging in Medicine and Surgery, 9(1), 115-126. doi: 10.21037/qims.2018.12.05 DOI: https://doi.org/10.21037/qims.2018.12.05
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. DOI: https://doi.org/10.2307/2529310
Liaw, C., & Guvendiren, M. (2017). Current and emerging applications of 3D printing in medicine. Biofabrication, 9(2), 024102. doi: 10.1088/1758-5090/aa7279 DOI: https://doi.org/10.1088/1758-5090/aa7279
Moscova, M., Bryce, D. A., Sindhusake, D., & Young, N. (2015). Integration of medical imaging including ultrasound into a new clinical anatomy curriculum. Anatomical Sciences Education, 8(3), 205-220. doi: 10.1002/ase.1481 DOI: https://doi.org/10.1002/ase.1481
Pawlina, W., & Drake, R. L. (2013). Anatomical models: don’t banish them from the anatomy laboratory yet. Anatomical Sciences Education, 6(4), 209-210. doi: 10.1002/ase.1380 DOI: https://doi.org/10.1002/ase.1380
Valverde, I. (2017). Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Revista Española de Cardiología, 70(4), 282-291. doi: 10.1016/j.rec.2017.01.012 DOI: https://doi.org/10.1016/j.rec.2017.01.012
Valverde, I., Gomez, G., Byrne, N., Anwar, S., Cerpa, M. A. S., Talavera, M. M., Pushparajah, K., & Forte, M. N. V. (2022). Criss-cross heart three-dimensional printed models in medical education: A multicenter study on their value as a supporting tool to conventional imaging. Anatomical Sciences Education, 5(4), 719-730. doi: 10.1002/ase.2105 DOI: https://doi.org/10.1002/ase.2105
Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D printing and its future directions. JACC: Cardiovasc Imaging, 10(2), 171-184. doi: 10.1016/j.jcmg.2016.12.001 DOI: https://doi.org/10.1016/j.jcmg.2016.12.001
Wilhite, R., & Wölfel, I. (2019). 3D Printing for veterinary anatomy: an overview. Anatomia, Histologia, Embryologia, 48(6), 609-620. doi: 10.1111/ahe.12502 DOI: https://doi.org/10.1111/ahe.12502
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.