Ewes fed high-concentrate diets containing flint corn and increasing levels of exogenous amylolytic enzyme: effects on nutrient intake and digestibility
DOI:
https://doi.org/10.5433/1679-0359.2023v44n3p1197Keywords:
Alpha-amylase, Nutrition, Sheep, Starch.Abstract
The aim was to evaluate if the inclusion of exogenous amylolytic enzyme affect the nutrient intake and digestibility in ewes fed high-concentrate diets containing flint corn. Five Santa Inês × Dorper crossbred ewes (54.04 ± 4.5 kg and aged 8 months) were used in a 5 x 5 Latin square design. All animals were housed in individual metabolic cages for 60 days. The treatments consisted of a control diet (without amylolytic enzyme) and four inclusion levels of an amylolytic enzyme (3,000, 6,000, 9,000, and 12,000 α-amylase dextrinizing units [DU] kg-1 dry matter [DM]). The enzyme was mixed into the feed at the time of supply to the animals. Data were analyzed by ANOVA, and orthogonal polynomial contrasts were used. Nutrient intake was not influenced by amylolytic enzyme inclusion. The digestibility of DM, organic matter, neutral detergent fiber, total carbohydrates, non-fibrous carbohydrates, and gross energy showed a quadratic increase with enzyme inclusion (P<0.05), with maximum values at levels of 7,600, 7,500, 6,300, 7,500, 7,400, and 7,800 DU kg-1 DM, respectively. Total digestible nutrients of diets also showed a quadratic increase, with a maximum value of 894 g kg-1 at a level of α-amylase activity of 7,786 DU kg-1 DM. The inclusion of the exogenous amylolytic enzyme from 6,300 to 7,800 DU kg-1 DM doesn’t alter nutrient intake and improves the digestibility in ewes fed high-concentrate diets.
Downloads
References
Allen, M. S., Bradford, B. J., & Oba, M. (2009). Board-invited review: the hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, 87(10), 3317-3334. doi: 10.2527/jas.2009-1779 DOI: https://doi.org/10.2527/jas.2009-1779
Amaro, F. X., Kim, D., Agarussi, M. C. N., Silva, V. P., Fernandes, T., Arriola, K. G., Jiang, Y., Cervantes, A. P., Adesogan, A. T., Ferraretto, L. F., Yu, S., Li, W., & Vyas, D. (2021). Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Translational Animal Science, 5(1), 1-16. doi: 10.1093/tas/txaa222 DOI: https://doi.org/10.1093/tas/txaa222
Association of Official Analytical Chemists (2016). Animal feed. In G. W. Latimer Jr. (Ed.), Official methods of analysis of AOAC international (20nd, pp. 1-77). Rockville.
Arrigoni, M. de B., Martins, C. L., Sarti, L. M. N., Barducci, R. S., Franzói, M. C. S., Vieira, L. C., Jr., Perdigão, A., Ribeiro, F. A., & Factori, M. A. (2013). Níveis elevados de concentrado na dieta de bovinos em confinamento. Veterinária e Zootecnia, 20(4), 539-551. http://hdl.handle.net/11449/141034
Cirne, L. G. A., Oliveira, G. J. C., Jaeger, S. M. P. L., Bagaldo, A. R., Leite, M. C. P., Oliveira, P. A., & Macedo, C. M., Jr. (2013). Desempenho de cordeiros em confinamento alimentados com dieta exclusiva de concentrado com diferentes porcentagens de proteína. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 65(1), 262-266. doi: 10.1590/S0102-09352014000100031 DOI: https://doi.org/10.1590/S0102-09352013000100037
Correa, C. E. S., Shaver, R. D., Pereira, M. N., Lauer, J. G., & Kohn, K. (2002). Relationship between corn vitreousness and ruminal in situ starch degradability. Journal of Dairy Science, 85(11), 3008-3012. doi: 10.3168/jds.S0022-0302(02)74386-5 DOI: https://doi.org/10.3168/jds.S0022-0302(02)74386-5
Costa, C., Jr., Goulart, R. S., Albertini, T. Z., Feigl, B. J., Cerri, C. E. P., Vasconcelos, J. T., Bernoux, M., Lanna, D. P. D., & Cerri, C. C. (2013). Brazilian beef cattle feedlot manure management: a country survey. Journal of Animal Science, 91(4), 1811-1818. doi: 10.2527/jas.2012-5603 DOI: https://doi.org/10.2527/jas.2012-5603
Detmann, E., Souza, M. A., Valadares, S. C., Fº., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Cabral, L. S., Pina, D. S., Ladeira, M. M., & Azevedo, J. A. G. (2012). Métodos para análise de alimentos. Instituto nacional de ciência e tecnologia de ciência. Suprema.
Ferraretto, L. F., Crump, P. M., & Shaver, R. D. (2013). Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. Journal of Dairy Science, 96(1), 533-550. doi: 10.3168/jds.2012-5932 DOI: https://doi.org/10.3168/jds.2012-5932
Homem, A. C., Jr., Nocera, B. F., Faleiros, L. F., Almeida, M. T. C., Paschoaloto, J. R., Perez, H. L., D’Áurea, A. P., & Ezequiel, J. M. B. (2019). Partial replacement of corn by soybean hulls in highgrain diets for feedlot sheep. Pesquisa Agropecuária Brasileira, 54(1), 1-7. doi: 10.1590/S1678-3921.PAB2019.V54.00029 DOI: https://doi.org/10.1590/s1678-3921.pab2019.v54.00029
Klingerman, C. M., Hu, W., McDonell, E. E., DerBedrosian, M. C., & Kung, L., Jr. (2009). An evaluation of exogenous enzymes with amylolytic activity for dairy cows. Journal of Dairy Science, 92(3), 1050-1059. doi: 10.3168/jds.2008-1339 DOI: https://doi.org/10.3168/jds.2008-1339
Kong, F., Lu, N., Liu, Y., Zhang, S., Jiang, H., Wang, H., Wang, W., & Li, S. (2021). Aspergillus oryzae and Aspergillus niger co-cultivation extract affects in vitro degradation, fermentation characteristics, and bacterial bomposition in a diet-specific manner. Animals, 11(5), 1-19. doi: 10.3390/ani11051248 DOI: https://doi.org/10.3390/ani11051248
Mao, S. Y., Zhang, R. Y., Wang, D. S., & Zhu, W. Y. (2013). Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe, 24(1), 12-19. doi: 10.1016/j.anaerobe.2013.08.003 DOI: https://doi.org/10.1016/j.anaerobe.2013.08.003
McAllister, T. A., & Ribeiro, G. (2013). Microbial strategies in the ruminal digestion of cereal grains. Proceeding of the Annual Meeting of the Brazilian Society of Animal Science, Lethbridge, AB, Canada, 50.
Meale, S. J., Beauchemin, K. A., Hristov, A. N., Chaves, A. V., & McAllister, T. A. (2014). Opportunities and challenges in using exogenous. Journal of Animal Science, 92(2), 427-442. doi: 10.2527/jas2013-6869 DOI: https://doi.org/10.2527/jas.2013-6869
Mendoza, G. D., Mota, N., Plata, F. X., Martinez, J. A., & Hernández, P. A. (2013). Effects of exogenous glucoamylase from Aspergillus niger and grain level on performance of the lambs. Animal Nutrition and Feed Technology, 13(3), 391-398
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85(6), 1217-1240.
Moharrery, A., Larsen, M., & Weisbjerg, M. R. (2014). Starch digestion in the rumen, small intestine, and hind gut of dairy cows - a meta-analysis. Animal Feed Science and Technology, 192(1), 1-14. doi: 10.1016/j.anifeedsci.2014.03.001 DOI: https://doi.org/10.1016/j.anifeedsci.2014.03.001
Nozière, P., Steinberg, W., Silberberg, M., & Morgavi, D. P. (2014). Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets. Journal of Dairy Science, 97(4), 2319-2328. doi: 10.3168/jds.2013-7095 DOI: https://doi.org/10.3168/jds.2013-7095
National Research Council (2007). Nutrient requirements of small ruminants. Sheep, goats, cervids and new world camelids. NRC, The National Academies.
Oliveira, E. R., Takiya, C. S., Del Valle, T. A., Rennó, F. P., Goes, R. H. T., Leite, R. S., Oliveira, K. M. P., Batista, J. D. O., Araki, H. M. C., Damiani, J., Silva, M. S. J., Gandra, E. R. S., Pereira, T. L., Gandra, J. R. (2019). Effects of exogenous amylolytic enzymes on fermentation, nutritive value, and in vivo digestibility of rehydrated corn silage. Animal Feed Science and Technology, 251(1), 86-95. doi: 10.1016/j.anifeedsci.2019.03.001 DOI: https://doi.org/10.1016/j.anifeedsci.2019.03.001
Philippeau, C., & Michalet-Doreau, B. (1997). Influence of genotype and stage of maturity of maize on rate of ruminal starch degradation. Animal Feed Science and Technology, 68(1-2), 25-35. doi: 10.1016/S0377-8401(97)00042-4 DOI: https://doi.org/10.1016/S0377-8401(97)00042-4
Philippeau, C., Le Deschault De Monredon, F., & Michalet-Doreau, B. (1999). Relationship between ruminal starch degradation and the physical characteristics of corn grain. Journal of Animal Science, 77(1), 238-243. doi: 10.2527/1999.771238x DOI: https://doi.org/10.2527/1999.771238x
Rossi, E. S., Faria, M. V., Mendes, M. C., Possatto, O., Jr., Faria, C. M. D. R., Silva, C. A., Vaskoski, V. L., Andrade, J. M., & Gava, E. (2016). Microscopia do amido e digestibilidade de grãos em híbridos de milho silageiros com diferentes vitreosidades. Revista Brasileira de Milho e Sorgo, 15(3), 608-619. doi: 10.18512/1980-6477/rbms.v15n3p607-618 DOI: https://doi.org/10.18512/1980-6477/rbms.v15n3p607-618
Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x DOI: https://doi.org/10.2527/1992.70113562x
Sosa, A., Saro, C., Mateos, I., Díaz, A., Galindo, J., Carro, M., & Ranilla, M. (2020). Effects of Aspergillus oryzae on ruminal fermentation of an alfalfa hay:concentrate diet using the rumen simulation technique (Rusitec). Cuban Journal of Agricultural Science, 54(2), 183-192. http://scielo.sld.cu/scielo.php?script=sciarttext&pid=S2079-34802020000200183&lng=es&nrm=iso
Swanson, K. C. (2019). Small intestinal anatomy, physiology, and digestion in ruminants. In G. Smithers, & K. Knoerzer (Eds.), Reference module in food science (pp. 1-7). Ecolab: Elsevier. DOI: https://doi.org/10.1016/B978-0-08-100596-5.22638-3
Tricarico, J. M., Johnston, J. D., & Dawson, K. A. (2008). Dietary supplementation of ruminant diets with an Aspergillus oryzae α-amylase. Animal Feed Science and Technology, 145(1-4), 136-150. doi: 10.1016/j.anifeedsci.2007.04.017 DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.017
Zhang, R., Liu, J., Jiang, L., & Mao, S. (2020). Effect of high-concentrate diets on microbial composition, function, and the VFAs formation process in the rumen of dairy cows. Animal Feed Science and Technology, 269(1), 114619. doi: 10.1016/j.anifeedsci.2020.114619 DOI: https://doi.org/10.1016/j.anifeedsci.2020.114619
Zilio, E. M. C., Del Valle, T. A., Ghizzi, L. G., Takiya, C. S., Dias, M. S. S., Nunes, A. T., Silva, G. G., & Rennó, F. P. (2019). Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows. Journal of Dairy Science, 102(5), 4179-4189. doi: 10.3168/jds.2018-14949 DOI: https://doi.org/10.3168/jds.2018-14949
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.