Effects of insulin on sperm cell quality in ram semen cooled at 5°C

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3803

Keywords:

Cooling, Glucose, Semen extender, Sheep, Spermatozoa.

Abstract

Insulin is present in the seminal plasma and is involved in sperm activities like motility and capacitation. However, the effects of insulin on the viability of cooled ram sperm are not fully understood. Therefore, the objective of the current study was to evaluate the effect of insulin addition on ram sperm maintained at 5ºC. Sperm samples were collected from six healthy, mature Santa Inês rams. The ejaculates were divided into two aliquots with (insulin group) or without (control group) insulin (3 IU mL-1) in the semen extender, and then cooled at 5°C for 48 hours. Subsequently, the sperm cells were evaluated for motility and kinetics using computer-assisted semen analysis. The samples were evaluated for acrosomal integrity by fluorescein using isothiocyanate combined with peanut agglutinin (FITC-PNA) and membrane functionality by the hypoosmotic swelling test. The semen analysis was performed after 24 or 48 hours of cooling. There was an increased percentage of progressive sperm motility (%), straightness (%), linearity (%) and beat caudal frequency (Hz) in the insulin group after 24 and 48 hours of cooling (p < 0.05). However, insulin did not affect total sperm motility, sperm velocities (VSL, VAP and VCL) (µm seg-1), acrosomal integrity and membrane functionality during cooling (p > 0.05). In conclusion, the addition of 3 IU mL-1 insulin to ram semen extender improved the quality of sperm motility after cooling.

Downloads

Download data is not yet available.

Author Biographies

Maurício Fraga van Tilburg, Universidade Estadual do Ceará

Prof. Dr., Northeast Network in Biotechnology Doctoral Program, Universidade Estadual do Ceará, RENORBIO, UECE, Fortaleza, CE, Brazil.

Rodrigo Vasconcelos de Oliveira, Universidade Federal Rural do Rio de Janeiro

Prof. Dr., Master and Doctoral Program in Animal Science, Universidade Federal Rural do Rio de Janeiro, UFRRJ, Rio de Janeiro, RJ, Brazil.

Carla Renata Figueiredo Gadelha, Universidade Estadual do Ceará

Profa Dra, Northeast Network in Biotechnology Doctoral Program, RENORBIO, UFC, Fortaleza, CE, Brazil.

Bruno Fagundes, Universidade Iguaçu

Prof. Dr., Universidade Iguaçu, UNIG, Itaperuna, RJ, Brazil.

Angelo Jose Burla Dias, Universidade Estadual do Norte Fluminense Darcy Ribeiro

Prof. Dr., Master and Doctoral Program in Animal Science, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil.

Célia Raquel Quirino, Universidade Estadual do Norte Fluminense Darcy Ribeiro

Profa Dra, Master and Doctoral Program in Animal Science, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil.

José Frederico Straggiotti Silva, Universidade Estadual do Norte Fluminense Darcy Ribeiro

Prof. Dr., Master and Doctoral Program in Animal Science, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil.

References

Aeeni, M., Razi, M., Alizadeh, A., & Alizadeh, A. (2021). The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats. Life Sciences, 277(1), 119394. doi: 10.101 6/j.lfs.2021.119394

Aitken, R. J., Curry, B. J., Shokri, S., Pujianto, D. A., Gavriliouk, D., Gibb, Z. Baker, M. A. (2021). Evidence that extrapancreatic insulin production is involved in the mediation of sperm survival. Molecular and Cellular Endocrinology, 526(1), 111193. doi: 10.1016/j.mce.2021.111193

Baumgard, L. H., Hausman, G. J., & Sanz Fernandez, M. V. (2016). Insulin: pancreatic secretion and adipocyte regulation. Domestic Animal Endocrinology, 54(1), 76-84. doi: 10.1016/j.domaniend.2015. 07.001

Cappello, A. R., Guido, C., Santoro, A., Santoro, M., Capobianco, L., Montanaro, D., Aquila, S. (2012). The mitochondrial citrate carrier (CIC) is presented and regulates insulin secretion by human male gamete. Endocrinology, 153(1), 1743-1754. doi: 10.1210/en.2011-1562

Carpino, A., Rago, V., Guido, C., Casaburi, I., & Aquila, S. (2010) Insulin and IR-beta in pig spermatozoa: a role of the hormone in the acquisition of fertilizing ability. International Journal of Andrology, 33(1), 554-562. doi: 10.1111/j.1365-2605.2009.00971.x

Cunha, E. C. P., Zangeronimo, M. G., Murgas, L. D. S., Braga, D. E., Pereira, B. A., Rocha, L. G. P.,... Pereira, L. J. (2012). Insulin addition to swine semen diluted and cooled at 15 ºC. Revista Brasileira de Zootecnia, 41(1), 1060-1064. doi: 10.1590/S1516-35982012000400031

Curtis, M. P., Kirkman-Brown, J. C., Connolly, T. J., & Gaffney, E. A. (2012). Modelling a tethered mammalian sperm cell undergoing hyperactivation. Journal of Theoretical Biology, 309(1), 1-10. doi: 10.1016/j.jtbi.2012.05.035

Dias, T. R., Alves, M. G., Silva, B. M., & Oliveira, P. F. (2014). Sperm glucose transport and metabolism in diabetic individuals. Molecular and Cellular Endocrinology, 396(1), 37-45. doi: 10.1016/j.mce.2014. 08.005

El-Badry, D. A., El Sisy, G. A., & Abo El-Maaty, A. M. (2016). Seminal plasma hormonal profile of Arabian stallions that are classified ‘good’ or ‘poor’ for semen freezing. Asian Pacific Journal of Reproduction, 5(6), 453-458. doi: 10.1016/j.apjr.2016.10.012

Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J. P., & Bollwein, H. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86(2), 562-571. doi: 10.1016/j.theriogenology.2016.02.007

Hering, D. M., Olenski, K., & Kaminski, S. (2014). Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Animal Reproduction Science, 146(3-4), 89-97. doi: 10.1016/j. anireprosci. 2014.01.012

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2012). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Osteoarthritis and Cartilage, 20(4), 256-260. doi: 10.1016/j.joca.2012.02.010

Laskowski, D., Sjunnesson, Y., Humblot, P., Andersson, G., Gustafsson, H., & Båge, R. (2016). The functional role of insulin in fertility and embryonic development - What can we learn from the bovine model? Theriogenology, 86(1), 457-464. doi: 10.1016/j.theriogenology.2016.04.062

Leisegang, K., Bouic, P. J., Menkveld, R., & Henkel, R. R. (2014). Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reproductive Biology and Endocrinology, 12(34), 34. doi: 10.1186/1477-7827-12-34

Makarevich, A., Spalekova, E., Olexikova, L., Kubovicova, E., & Hegedusova, Z. (2014). Effect of insulin-like growth factor I on functional parameters of ram cooled-stored spermatozoa. Zygote, 22(3), 305-313. doi: 10.1017/S0967199412000500

Meneses, M. J., Borges, D. O., Dias, T. R., Martins, F. O., Oliveira, P. F., Macedo, M. P., & Alves, M. G. (2019). Knockout of insulin-degrading enzyme leads to mice testicular morphological changes and impaired sperm quality. Molecular and Cellular Endocrinology, 486(1), 11-17. doi: 10.1016/j. mce.20 19.02.011

Morris, G. J., Acton, E., Murray, B. J., & Fonseca, F. (2012). Freezing injury: the special case of the sperm cell. Cryobiology, 64(2), 71-80. doi: 10.1016/j.cryobiol.2011.12.002

Palacín, I., Yániz, J. L., Fantova, E., Blasco, M. E., Quintín-Casorrán, F. J., Sevilla-Mur, E., & Santolaria, P. (2012). Factors affecting fertility after cervical insemination with cooled semen in meat sheep. Animal Reproduction Science, 132(3), 139-144. doi: 10.1016/j.anireprosci.2012.05.005

Pergialiotis, V., Prodromidou, A., Frountzas, M., Korou, L. M., Vlachos, G. D., & Perrea, D. (2016). Diabetes mellitus and functional sperm characteristics: A meta-analysis of observational studies. Journal of Diabetes and Its Complications, 30(6), 1167-1176. doi: 10.1016/j.jdiacomp.2016.04.002

Selvaraju, S., Krishnan, B. B., Archana, S. S., & Ravindra, J. P. (2016). IGF1 stabilizes sperm membrane proteins to reduce cryoinjury and maintain post-thaw sperm motility in buffalo (Bubalus bubalis) spermatozoa. Cryobiology, 73(1), 55-62. doi: 10.1016/j.cryobiol.2016.05.012

Shokri, S., Ebrahimi, S. M., Ziaeipour, S., & Nejatbakhsh, R. (2019). Effect of insulin on functional parameters of human cryopreserved sperms. Cryobiology, 87(1), 68-73. doi: 10.1016/j.cryobiol.2019. 02.002

Silva, D. M., Zangeronimo, M. G., Murgas, L. D. S., Rocha, L. G. P., Chaves, B. R., Pereira, B. A., & Cunha, E. C. P. (2011) Addition of IGF-I to storage-cooled boar semen and its effect on sperm quality. Growth Hormone & IGF Research, 21(6), 325-330. doi: 10.1016/j.ghir.2011.08.002

Srivastava, N., Srivastava, S. K., Ghosh, S. K., Kumar, A., Perumal, P., & Jerome, A. (2013). Acrosome membrane integrity and cryocapacitation are related to cholesterol content of bull spermatozoa. Asian Pacific Journal of Reproduction, 2(2), 126-131. doi: 10.1016/S2305-0500(13)60132-3

van Tilburg, M. F., Silva, J. F. S., Dias, A. J. B., Quirino, C. R., & Fagundes, B. (2008). Influência da insulina na congelabilidade do sêmen de ovino. Ciência Animal Brasileira, 9(3), 731-739.

Wang, G., Guo, Y., Zhou, T., Shi, X., Yu, J., Yang, Y.,... Sha, J. (2013). In-depth proteomic analysis of the human sperm reveals complex protein compositions. Journal of Proteomics, 79(1), 114-122. doi: 10.10 16/j.jprot.2012.12.008

Weerakoon, W. W. P. N., Sakase, M., Kohama, N., & Kawate, N. (2020). Plasma estradiol-17β, cortisol, and insulin concentrations and serum biochemical parameters surrounding puberty in Japanese Black beef bulls with normal and abnormal semen. Theriogenology, 148(1), 18-26. doi: 10.1016/j.theriogenology. 2020.02.035

Yániz, J. L., Palacín, I., Vicente-Fiel, S., Sánchez-Nadal, J. A., & Santolaria, P. (2015). Sperm population structure in high and low field fertility rams. Animal Reproduction Science, 156(1), 128-134. doi: 10. 1016/j.anireprosci.2015.03.012

Zhu, Z., Umehara, T., Tsujita, N., Kawai, T., Goto, M., Cheng, B.,... Shimada, M. (2020). Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis. Free Radical Biology and Medicine, 159(1), 44-53. doi: 10.1016/j.freeradbiomed. 2020.07.008

Downloads

Published

2021-10-08

How to Cite

van Tilburg, M. F., Oliveira, R. V. de, Gadelha, C. R. F., Fagundes, B., Dias, A. J. B., Quirino, C. R., & Silva, J. F. S. (2021). Effects of insulin on sperm cell quality in ram semen cooled at 5°C. Semina: Ciências Agrárias, 42(6SUPL2), 3803–3812. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3803

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.