Isolates of Bacillus spp. to promote growth and protection of garlic (Allium sativum L.) cultivation
DOI:
https://doi.org/10.5433/1679-0359.2025v46n4p1067Keywords:
Alliaceae, Biocontrol agents, Plant growth, Rhizobacteria, Stromatinia cepivora.Abstract
Garlic (Allium sativum L.) is among the most widely consumed vegetables in Brazil; however, a significant proportion of the national demand is met through imports. In recent years, domestic garlic production and productivity have improved due to the adoption of advanced agricultural technologies. Nevertheless, certain factors, such as soil-borne diseases caused by pathogenic fungi, continue to hinder further increases in yield. Root diseases such as white rot caused by Stromatinia cepivora Berk (sin =. Sclerotium cepivorum) is notably difficult to manage and can lead to substantial crop losses. In this context, biological control using rhizobacteria has emerged as a viable and efficient alternative. The present study conducted two greenhouse experiments to evaluate the ability of rhizobacteria isolated from soils of garlic-producing regions. In the first experiment, four isolates were used in a sterilized system, and in the second one, five isolates were inoculated in plants grown in soil. Therefore, the isolates EB01, EB15, EB17, and EB21 significantly promoted garlic growth. In the second experiment, the isolates EB01, EB13, EB18, EB19, and EB24 significantly reduced the incidence of S. cepivorum. They showed greater similarity, according to the 16S rRNA gene, to Bacillus velezensis, Bacillus rugosus, Bacillus subtilis, Bacillus tequilensis, and Bacillus velezensis, respectively.
Downloads
References
Aleinikova, N., Galkina, Y., Andreyev, V., Bolotianskaia, E., & Shaporenko, V. (2023). The prospects of using Bacillus amyloliquefaciens in the biological control of grape diseases. Iop Conference Series: Earth and Environmental Science, 1206(1), 012025. doi: 10.1088/1755-1315/1206/1/012025
Azevedo, G. P. R., Mattsson, H. K., Appolinario, L. R., Calegario, G., Leomil, L., Walter, J. M., Campeão, M., Tonon, L. A. C., Moreira, A. P. B., Vidal, L., Vieira, V. V., Otsuki, K., Tschoeke, D. A., Swings, J., Thompson, F. L., & Thompson, C. C. (2020). Enterovibrio baiacu sp. nov. Current Microbiology, 77(1), 154-157. doi: 10.1007/s00284-019-01785-7
Bahadir, P. S., Lİaqat, F., & Eltem, R. (2018). Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany, 42(2), 183-196. doi: 10.3906/bot-1706-51
Barbosa, S. da S., Santiago, P. A. L., Santiago, S. R. S. da S., Gomes, A. M. dos S., Pereira, K. D. do E. S., Lima, Y. V. V., & Ohse, K. C. (2021). Atividade antagonista das bactérias associados ao solo do município de Iranduba. Brazilian Journal of Development, 7(5), 45099-45109. doi: 10.34117/bjdv.v7i5.29364
Balbinot, W. G., Rodrigues, S., & Botelho, G. R. (2020). Isolates of Bacillus sp. from garlic: effect on corn development and plant growth-promoting mechanisms. Revista Brasileira de Ciência do Solo, 44(1), 1-17. doi: 10.36783/18069657rbcs20200043
Belincanta, C., Botelho, G. R., Ornellas, T. S., Zappelini, J., & Guerra, M. P. (2022). Characterization of the endophytic bacteria from in vitro cultures of Dendrocalamus asper and Bambusa oldhamii and assessment of their potential effects in in vitro co-cultivated plants of Guadua chacoensis (Bambusoideae, Poaceae). In Vitro Cellular & Developmental Biology - Plant, 58(1), 122-132. doi: 10.1007/s11627-021-10204-1
Bhat, M. A., Kumar, V., Bhat, M. A., Wani, I. A., Dar, F. L., Farooq, I., Bhatti, F., Koser, R., Rahman, S., & Jan, A. T. (2020). Mechanistic insights of the interaction of Plant Growth-Promoting Rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers in Microbiology, 11(1), e1952. doi: 10.3389/fmicb.2020.01952
Buta, G. O., & Silva, J. J., Jr. (2020). Competitividade internacional nas importações brasileiras do alho: análise do período de 2008-2019. Informações Econômicas, 51(1), 1-14. http://www.iea.sp.gov.br/ftpiea/ie/2020/IE-16-2020.pdf
Chagas, L. F. B., Martins, A. L. L., Carvalho, M. R., Fº., Miller, L. de O., Oliveira, J. C. de, & Chagas, A. F., Jr. (2018). Bacillus subtilis E Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-Caupi, milho e arroz. Agri-Environmental Sciences, 3(2), 10-18. doi: 10.36725/agries.v3i2.430
Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218(1), 41-48. doi: 10.1016/j.micres.2018.10.002
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19(1), 29-37. doi: 10.1016/j.jare.2019.03.004
Elshaghabee, F. M., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Frontiers in Microbiology, 8(1), 1490. doi: 10.3389/fmicb.2017.01490
Elshahawy, I. E, Saied, N. M., Abd-El-Kareem, F & Morsy, A. A. (2018). Field application of selected bacterial strains and their combinations for controlling onion and garlic white rot disease caused by Stromatinia cepivora. Journal of Plant Pathology, 100(3), 493-503. doi: 10.1007/s42161-018-0113-z
Ferreira, T. C., Lago, L., Silva, L. G., Pacifico, M. G., Faria, M. R., & Bettiol, W. (2021). Potencial de Bacillus spp. em promover o crescimento e controlar Fusarium verticillioides em milho. Summa Phytopathologica, 47(4), 195-203. doi: 10.1590/0100-5405/241384
Gabardo, G., Pria, M. D., Prestes, A. M. C., & Silva, H. L. da. (2020). Trichoderma asperellum e Bacillus subtilis como antagonistas no crescimento de fungos fitopatogênicos in vitro Trichoderma asperellum e Bacillus subtilis como antagonistas no crescimento de fungos fitopatogênicos in vitro. Revista Brasileira de Desenvolvimento, 6(8), 55870-55885. doi: 10.34117/bjdv6n8-123
Guerrero-Barajas, C., Constantino-Salinas, E. A., Amora-Lazcano, E., Tlalapango-Ángeles, D., Mendoza- Figueroa, J. S., Cruz-Maya, J. A., & Jan-Roblero, J. (2020). Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado. Journal of the Science of Food and Agriculture, 100(10), 4049-4056. doi: 10.3390/life12020219
Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5753-5798. doi: 10.1099/ijsem.0.004475
Hartmann, A., Singh, M., & Klingmuller, W. (1983). Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian Journal of Microbiology, NRC Research Press, 29(8), 916-923. doi: 10.1139/m83-147
Chagas, A. F., Jr., Chagas, L. F. B., Nobrega, G. S., Giongo, M., Moura, D. M. de O., Ferreira, A. L. L., Almeida, L. B. de, Portella, A. C. F., & Scheidt, G. N. (2023). Utilização de Bacillus subtilis como promotor de crescimento na cultura do tomate e alface. Journal of Biotechnology and Biodiversity, 11(4), 153-159. doi: 10.20873/jbb.uft.cemaf.v11n4.18000
Karthika, S., Remya, M., Varghese, S., Dhanraj, N. D., Sali, S., Rebello, S., Midhun Jose, S., & Jisha, M. S. (2022). Bacillus Tequilensis PKDN31 and Bacillus Licheniformis PKDL10 -as double headed swords to combat Fusarium Oxysporum f. sp. lycopersici induced tomato wilt. Microbial Pathogenesis, 172(1), e105784. doi: 10.1016/j.micpath.2022.105784
Kaul, N., Kashyap, P. L., Kumar, S., Singh, D., & Singh, G. P. (2022). Diversity and exploration of endophytic Bacilli for the management of Head Scab (Fusarium graminearum) of wheat. Pathogens, 11(10), e1088. doi: 10.3390/pathogens11101088
Kozlov, A. M., Diego, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35(21), 4453-4455. doi: 10.1093/bioinformatics/btz305
Leôncio, M. R., & Botelho, G. R. (2017). Isolation and characterization of plant growth promoting bacteria isolated from garlic (Allium sativum). Sciencia Agraria, 18(3), 95-106. doi: 10.5380/rsa.v18i3.50630
Li, H., Guan, Y., Dong, Y., Zhao, L., Rong, S., Chen, W., Lv, M., Gao, X., Chen, R., Li, L., & Xu, Z, (2018). Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. Plos One, 13(10), e0203505. doi: 10.1371/journal.pone.0203505
Lucini, M. A. (2004). Alho: manual prático de produção (2a ed.). Bayer Cropscience.
Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soil. California Agricultural Experimental Station. https://www.nutricaodeplantas.agr.br/site/downloads/hoagland_arnon.pdf
Marcuzzo, L. L., & Luiz, L. (2017a). Influência da temperatura e do fotoperíodo na germinação in vitro de escleródios de Sclerotium cepivorum, agente causal da podridão branca do alho e da cebola. Summa Phytopathologica, 43(2), 1-1. doi: 10.1590/0100-5405/178073
Marcuzzo, L. L., & Schmoeller, J. (2017b). Sobrevivência e viabilidade de escleródios de Sclerotium cepivorum no solo. Summa Phytopathologic, 43(2), 161-163. doi: 10.1590/0100-5405/167306
Matsumura, A. T. S., Paz, I. C. P., Guimarães, A. M., Silva, M. E., Ott, A. P., & Duarte, V. (2016). Efeito de três formulações de Bacillus amyloliquefaciens ICBB200 sobre o crescimento de plantas de alface (Lactuca sativa L.) em cinco condições edafoclimáticas. Scientia Agraria Paranaensis, 15(2), 146-152. doi: 10.18188/sap.v15i2.13093
Menezes, J. A., Sobrinho, Lopes, C. A., Reifschneider, F. J. B., Charchar, J. M., Crisostomo, L. A., Carrijo, O. A., & Barbosa, S. (1993). A cultura do alho. EMBRAPA-SPI.
Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The Significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037. doi: 10.3390/microorganisms8071037
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), Nova Orleans, Louisiana, EUA.
Ocegueda-Reyes, M. D., Casas-Solís, J., Virgen-Calleros, G., González-Eguiarte, D. R., López-Alcocer, E., & Olalde-Portugal, V. (2020). Aislamiento, identificación y caracterización de rizobactérias antagónicas a Sclerotium cepivorum. Revista Mexicana de Fitopatologia, 38(1), 146-159. doi: 10.18781/r.mex.fit.1911-2
Paula, G. F., Demétrio, G. B., & Matsumoto, L. S. (2021). Biotechnological potential of soybean plant growth promoting rhizobacteria. Revista Caatinga, 34(2), 328-338. doi: 10.1590/1983-21252021v34n209rc
Phour, M., Sehrawat, A., Sindhu, S. S., & Glick, B. R. (2020). Interkingdom signaling in plant- rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 241(1), 126589. doi: 10.1016/j.micres.2020.126589
Poveda, J., Rodríguez, V. M., Díaz-Urbano, M., Sklenár, F., Saati-Santamaría, Z., Menéndez, E., & Velasco, P. (2022). Endophytic fungi from kale (Brassica oleracea var. acephala) modify roots glucosinolate profile and promote plant growth in cultivated Brassica species. First description of Pyrenophora gallaeciana. Frontiers in Microbiology, 13(1), e981507. doi: 10.3389/fmicb.2022.981507
Rathod, K., Rana, S., Dhandukia, P., & Thakker, J. N. (2023). Investigating marine Bacillus as an effective growth promoter for chickpea. Journal of Genetic Engineering and Biotechnology, 21(1), e137. doi: 10.1186/s43141-023-00608-4
R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Russi, A., Almanca, M. A. K., & Schwambach, J. (2022). Bacillus subtilis strain F62 against Fusarium oxysporum and promotes plant growth in the grapevine rootstock SO4. Anais da Academia Brasileira de Ciências, 94(3), e20210860. doi: 10.1590/0001-3765202220210860
Sayago, P., Juncosa, F., Orio, A. G. A., Luna, D. F., Molina, G., Lafi, J., & Ducasse, D. A. (2020). Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance. European Journal of Plant Pathology, 157(3), 509-519. doi: 10.1007/s10658-020-02012-x
Silva, A. T. (2012). Diversidade de bactérias simbióticas e não simbióticas isoladas de nódulos de siratro. Dissertação de mestrado, Universidade Federal de Lavras, Lavras, MG, Brasil.
Sousa, I. M., Nascente, A. S., & Filippi, M. C. C. de. (2019). Bactérias promotoras do crescimento radicular em plântulas de dois cultivares de arroz irrigado por inundação. Colloquium Agrariae, 15(2), 140-145. doi: 10.5747/ca.2019.v15.n1.a293
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq, B. A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability. A review. Molecules, 21(5), e573. doi: 10.3390/molecules21050573
Wang, C. J., Ying-Zi, W., Hui, C. Z., Pei-Song, W., Bao-You, L., Bao-Yan, L., Xiao-Li, L., & Bing, L. (2020). Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.). Journal of Plant Physiology, 253(1), 153260. doi: 10.1016/j.jplph.2020.153260
Xu, T., Zhu, T., & Li, S. (2016). O gene da β-1,3-1,4-glucanase de Bacillus velezensis ZJ20 exerce efeito antifúngico em fungos patogênicos de plantas. World Journal of Microbiology and Biotechnology, 32(2), 1-9. doi: 10.1007/s11274-015-1985-0
Zapata-Narváez, Y., & Gómez-Marroquín, M. R. (2022). Control de Sclerotium cepivorum y promoción del crecimiento en ajo (Allium sativum) con microorganismos antagonistas. Agronomía Mesoamericana, 33(2), 1-12. doi: 10.15517/am.v33i2.46462
Zhang, T., Li, H., Ma, S., Cao, J., Liao, H., Huang, Q., & Chen, W. (2023). The newest Oxford Nanopore R10. 4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Applied and Environmental Microbiology, 89(10), e00605-23. doi: 10.1128/aem.00605-23
Zhang, Y., Li, Z., Lu, Y., Zhang, J., Sun, Y., Zhou, J., Tu, T., Gong, W., Sun, W., & Wang, Y. (2022). Characterization of Bacillus velezensis E2 with abilities to degrade ochratoxin A and biocontrol against Aspergillus westerdijkiae fc-1. Toxicon, 216(1), 125-131. doi: 10.1016/j.toxicon.2022.07.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cíntia Faquin, Yohan Fritsche, Gustavo Pitta Reis de Azevedo, Valdir Marcos Stefenon, Gregory Kruker, Glória Regina Botelho

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











