Evaluation of natural additives on in vitro gas production kinetics and digestibility of Xaraés grass combined or not with dry fiber and solubles

Authors

DOI:

https://doi.org/10.5433/1679-0359.2025v46n3p965

Keywords:

Rumen fermentation, Forage, ionophore, Yeast, non-ionophores, Functional oils.

Abstract

This study aimed to assess the impacts of various additives on the kinetic parameters of gas production and in vitro dry matter digestibility (IVDMD) and in vitro neutral detergent fiber digestibility (IVNDFD) in substrates with high fiber content. The additives evaluated were: control (CON) - without additives; Monensin (MON) - 20 mg/kg DM; Flavomycin (FLAVO) - 4 mg/kg DM; Live yeasts (LY) - Saccharomyces cerevisiae - 0.5 g/kg DM; Yeast culture (YC1) - 1.3 g/kg DM; Yeast culture (YC2) - 1.3 g/kg DM; and Essential Oils (EO) - 3.5 g/kg DM. The substrates used were: forage Urochloa brizantha cv. Xaraés (11.5% of CP) alone, Dry Fiber with Solubles (DFS) alone, and a combination of the two (50:50). Ruminal fluid was obtained from two castrated F1 Nellore x Angus (BW = 400 ± 25 kg), fitted with a rumen cannula, grazing Urochloa brizantha cv. Marandu, and receiving mineral supplement without additives. Three consecutive incubations were conducted with gas production volume (GP) measured on times 3, 6, 9, 12, 18, 24, 36, and 48 hours using a semi-automatic reader. A total of 67 flasks per incubation (7 additives x 3 substrates x 3 replicates) and four additional flasks as blanks (rumen liquid + buffer solution) were used in each run. Data were analyzed in a 7 x 3 factorial arrangement (7 additives and 3 substrates). No interactions between additives and substrates (P > 0.05) were observed for variables analyzed. Asymptotic GP was higher (P < 0.05) for combination of the forage + DFS substrate, intermediate for DFS alone, and lower for forage alone. The FLAVO supplementation increased GP (P < 0.05) compared to other additives, while MON and FLAVO inclusion reduced (P < 0.05) the digestion rate. Lag time was higher (P < 0.05) when only forage was used as a substrate, with no differences between additives. The MON and FLAVO decreased (P < 0.05) IVDMD, IVNDFD, and NH3-N. The substrate DFS stimulated microbial biomass synthesis (P < 0.05), with no significant difference observed between additives. In conclusion, regardless of the substrate, FLAVO inclusion promotes greater in vitro gas production, whereas MON and FLAVO had detrimental effects on DM and NDF digestion.

Downloads

Download data is not yet available.

Author Biographies

Victória Curvo Ormond, Universidade Federal de Mato Grosso

Student in the Post-Graduate Program in Animal Science, Universidade Federal de Mato Grosso, UFMT, Cuiabá, MT, Brazil.

Leticia de Assis Calmon Cerisara, Universidade Federal de Mato Grosso

Student in the Post-Graduate Program in Tropical Agriculture UFMT, Cuiabá, MT, Brazil.

Edjane Pereira da Silva, Universidade Federal de Mato Grosso

Student in the Post-Graduate Program in Animal Science, Universidade Federal de Mato Grosso, UFMT, Cuiabá, MT, Brazil.

Rafaela Juliana Jardim Cunha, Universidade Federal de Mato Grosso

Student in the Post-Graduate Program in Animal Science, Universidade Federal de Mato Grosso, UFMT, Cuiabá, MT, Brazil.

Luciano da Silva Cabral, Universidade Federal de Mato Grosso

Prof. Dr., Post-graduate Program in Animal Science, UFMT, Cuiabá, MT, Brazil.

Mozart Alves Fonseca, Departament of Animal and Range Sciences

Prof., Beef Cattle Nutrition & Helth, Departament of Animal and Range Sciences, Clayton, NM, USA.

Joanis Tilemahos Zervoudakis, Universidade Federal de Mato Grosso

Prof. Dr., Post-graduate Program in Animal Science, UFMT, Cuiabá, MT, Brazil.

Tayane Barbosa Pereira, Universidade Federal de Mato Grosso

Student in the Post-Graduate Program in Animal Science, Universidade Federal de Mato Grosso, UFMT, Cuiabá, MT, Brazil.

Ricardo Pereira Manzano, Nutripec Consultoria

Consultant, Catanduva, SP, Brazil.

Nelcino Francisco de Paula, Universidade Federal de Mato Grosso

Prof. Dr., Post-graduate Program in Animal Science, UFMT, Cuiabá, MT, Brazil.

References

Ahmed, M. G., Elwakeel, E. A., El-Zarkouny, S. Z., & Al-Sagheer, A. A. (2024). Environmental impact of phytobiotic additives on greenhouse gas emission reduction, rumen fermentation manipulation, and performance in ruminants: an updated review. Environmental Science and Pollution Research, 31(26), 37943-37962. doi: 10.1007/s11356-024-33664-5

Alamouti, A. A., Alikhani, M., Ghorbani, G. R., & Zebeli, Q. (2009). Effects of inclusion of neutral detergent soluble fibre sources in diets varying in forage particle size on feed intake, digestive processes, and performance of mid-lactation Holstein cows. Animal Feed Science and Technology, 154(1-2), 9-23. doi: 10.1016/j.anifeedsci.2009.07.002

Anassori, E., Dalir-Naghadeh, B., Pirmohammadi, R., Taghizadeh, A., Asri-Rezaei, S., Farahmand-Azar, S., Besharati, M., & Tahmoozi, M. (2012). In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil and monensin. Veterinary Research Forum, 3(1), 5-11.

Blümmel, M., Steingaβ, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921. doi: 10.1079/BJN19970089

Bretschneider, G., Elizalde, J. C., & Pérez, F. A. (2008). The effect of feeding antibiotic growth promoters on the performance of beef cattle consuming forage-based diets: a review. Livestock Science, 114(2-3), 135-149. doi: 10.1016/j.livsci.2007.12.017

Brutti, D. D., Paula, N. F. de, Zervoudakis, J. T., Cabral, L. D. S., Fonseca, M. A., Macedo, B. G., & Lima, L. R. (2019). Effects of tannins and monensin on the modulation of in vitro ruminal fermentation and ammonia production of nitrogenâ€fertilized and nonâ€fertilized Urochloa brizantha cv. Marandu. Grassland Science, 65(2), 101-108. doi: 10.1111/grs.12221

Busquet, M., Calsamiglia, S., Ferret, A., & Kamel, C. (2006). Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 89(2), 761-771. doi: 10.3168/jds.S0022-0302(06)72137-3

Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L., & Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580-2595. doi: 10.3168/jds.2006-644

Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8(2), 130-132. doi: 10.1093/clinchem/8.2.130

Detmann, E., Paulino, M. F., Mantovani, H. C., Valadares, S. D. C., Fº., Sampaio, C. B., Souza, M. A. de, Lazzarini, I., & Detmann, K. S. (2009). Parameterization of ruminal fiber degradation in low-quality tropical forage using Michaelis-Menten kinetics. Livestock Science, 126(1-3), 136-146. doi: 10.1016/j.livsci.2009.06.013

Detmann, E., Souza, M. A., Valadares, S. C., Fº., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Cabral, L. S., Pina, D. S., Ladeira M. M., & Azevedo, J. A. G. (2012). Métodos para análise de alimentos - national institute of science and technology - animal science, INCT-CA. Suprema.

Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(12), 4583-4592. doi: 10.2527/jas.2011-5018

Edwards, J. E., McEwan, N. R., McKain, N., Walker, N., & Wallace, R. J. (2005). Influence of flavomycin on ruminal fermentation and microbial populations in sheep. Microbiology, 151(3), 717-725. doi: 10.1099/mic.0.27602-0

Gijzen, H. J., Lubberding, H. J., Gerhardus, M. J., & Vogels, G. D. (1988). Contribution of rumen protozoa to fiber degradation and cellulase activity in vitro. FEMS Microbiology Ecology, 4(1), 35-43. doi: 10.1111/j.1574-6968.1988.tb02645.x

Ishlak, A., Günal, M., & AbuGhazaleh, A. A. (2015). The effects of cinnamaldehyde, monensin, and quebracho condensed tannin on rumen fermentation, biohydrogenation, and bacteria in continuous culture system. Animal Feed Science and Technology, 207(1), 31-40. doi: 10.1016/j.anifeedsci.2015.05.023

Krishnamoorthy, U., Soller, H., Steingass, H., & Menke, K. H. (1991). A comparative study on rumen fermentation of energy supplements in vitro. Journal of Animal Physiology and Animal Nutrition, 65(1â€5), 28-35. doi: 10.1111/j.1439-0396.1991.tb00237.x

Leng, R. A. (1990). Factors affecting the utilization of poor-quality forages by ruminants, particularly under tropical conditions. Nutrition Research Reviews, 3(1), 277-303. doi: 10.1079/NRR19900016

Maamouri, O., & Ben Salem, M. (2022). The effect of live yeast Saccharomyces cerevisiae as probiotic supply on growth performance, feed intake, ruminal pH, and fermentation in fattening calves. Veterinary Medicine and Science, 8(1), 398-404. doi: 10.1002/vms3.631

Marques, R. da S., & Cooke, R. F. (2021). Effects of ionophores on ruminal function of beef cattle. Animals, 11(10), 2871. doi: 10.3390/ani11102871

Martello, H. F., Paula, N. F. de, Macedo, B. G., Zervoudakis, J. T., Brutti, D. D., Carvalho, P., Teobaldo, R. W., Cabral, L. S., & Fonseca, M. A. (2019). Effects of tannins and monensin in a feedlot diet on in vitro ruminal fermentation. Semina: Ciências Agrárias, 40(6, Supl.2), 3223-3232. doi: 10.5433/1679-0359.2019v40n6Supl2p3223

Melo, L. D., Oliveira, P. E. P. D., Plodoviski, D. C., Costa, L. D., Rosa, C. B. D., Pereira, E. L. C., Souza, A. M. de, & Neumann, M. (2023). Supplementation of yeast culture combined with an enzyme complex in the diet for confined steers. Ciência Animal Brasileira, 24(1), e-74470. doi: 10.1590/1809-6891v24e-74470E

Morsy, A. S., Soltan, Y. A., Sallam, S. M. A., Kreuzer, M., Alencar, S. M. D., & Abdalla, A. L. (2015). Comparison of the in vitro efficiency of supplementary bee propolis extracts of different origin in enhancing the ruminal degradability of organic matter and mitigating the formation of methane. Animal Feed Science and Technology, 199(1), 51-60. doi: 10.1016/j.anifeedsci.2014.11.004

Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules, 25(20), 4711. doi: 10.3390/molecules25204711

Newbold, C. J., De La Fuente, G., Belanche, A., Ramos-Morales, E., & McEwan, N. R. (2015). The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6(1), 1313. doi: 10.3389/fmicb.2015.01313

Nunes, A. T., Cabral, D. L. V., Amorim, E. L. C., Santos, M. V. F. dos, & Albuquerque, U. P. (2016). Plants used to feed ruminants in semi-arid Brazil: a study of nutritional composition guided by local ecological knowledge. Journal of Arid Environments, 135(1), 96-103. doi: 10.1016/j.jaridenv.2016.08.015

Nzeyimana, J. B., Fan, C., Tan, L., Butore, J., Zhuo, Z., & Cheng, J. (2023). Meta-analysis of the effect of feeding live yeast (Saccharomyces cerevisiae) on feeding behaviour and lactation performance, rumen fermentation, and rumen microbiota in dairy cattle. Journal of Animal Behaviour and Biometeorology, 11(4), 2023028. doi: 10.31893/jabb.23028

Oeztuerk, H. A. K. A. N., Schroeder, B., Beyerbach, M., & Breves, G. (2005). Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. Journal of Dairy Science, 88(7), 2594-2600. doi: 10.3168/jds.S0022-0302(05)72935-0

Öztürk, H., DemirbaÅŸ, Y. S., Aydin, F. G., PiÅŸkin, İ., Ünler, F. M., & Emre, M. B. (2015). Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semicontinuous culture system (Rusitec). Turkish Journal of Veterinary & Animal Sciences, 39(5), 556-559. doi: 10.3906/vet-1506-16

Paciullo, D. S. C., Gomide, J. A., Queiroz, D. S., & Silva, E. A. M. D. (2001). Correlações entre componentes anatômicos, químicos e digestibilidade in vitro da matéria seca de gramíneas forrageiras. Revista Brasileira de Zootecnia, 30(3 suppl 1), 955-963. doi: 10.35172/rvz.2021.v28.581

Polizel, D. M., Cappellozza, B. I., Hoe, F., Lopes, C. N., Barroso, J. P., Miszura, A., Oliveira, G. B., Gobato, L., & Pires, A. V. (2020). Effects of narasin supplementation on dry matter intake and rumen fermentation characteristics of Bos indicus steers fed a high-forage diet. Translational Animal Science, 4(1), 118-128. doi: 10.1093/tas/

Rezaei Ahvanooei, M. R., Norouzian, M. A., Piray, A. H., Vahmani, P., & Ghaffari, M. H. (2023). Effects of monensin supplementation on lactation performance of dairy cows: a systematic review and dose-response meta-analysis. Scientific Reports, 13(1), 568. doi: 10.1038/s41598-023-27395-9

Rodrigues, J. A., Abreu, J. G. de, Abreu, M. L. C., Assis, L. M. B., Rocha, N. T. da, Souza, V. B. de, Jr., & Xavier, M. F. N. (2021). Parâmetros cinéticos de produção de gás in vitro de diferentes genótipos de capim-elefante (Pennisetum purpureum Schum.). Veterinária e Zootecnia, 28(1), 1-8. doi: 10.35172/rvz.2021.v28.581

Rogers, M., Jouany, J. P., Thivend, P., & Fontenot, J. P. (1997). The effects of short-term and long-term monensin supplementation, and its subsequent withdrawal on digestion in sheep. Animal Feed Science and Technology, 65(1-4), 113-127. doi: 10.1016/S0377-8401(96)01089-9

Rosa e Silva, P. I. J. L. D., Silva, Y. R. V. B. E., Sousa, D. D. P., Paulino, P. V. R., Possamai, A. J., Freiria, L. B. D., Rolim, H. C. L., Dias Júnior, W. C., Fonseca, A. S. R., Costa, A. C., Negrão, F. M., & Cabral, L. S. (2024). Effect of dried distillers' grains on nutrients digestibility and nitrogen metabolism of Nellore cattle fed non-forage diets. Revista Brasileira de Zootecnia, 53(1), e20240045. doi: 10.37496/rbz5320240045

Russell, J. B. (2002). Rumen microbiology and its role in ruminant nutrition. Department of Microbiology, Cornell University.

Russel, J. B., & Martin, S. A. (1984). Effects of various methane inhibitors on the fermentation of amino acids by mixed rumen microorganisms in vitro. Journal of Animal Science, 59(5), 1329-1338. doi: 10.2527/jas1984.5951329x

Russell, J. B., & Strobel, H. (1989). Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 55(1), 1-6. doi: 10.1128/aem.55.1.1-6.1989

Russell, J. B., Onodera, R., & Hino, T. (1991). Ruminal protein fermentation: new perspectives on previous contradictions. In T. Tsuda, Y. Sasaki, & R. Kawashi (Eds.), Physiological aspects of digestion and metabolism in ruminants (pp. 681-697). Academic Press.

Schingoethe, D. J., Kalscheur, K. F., Hippen, A. R., & Garcia, A. D. (2009). Invited review: the use of distillers products in dairy cattle diets. Journal of Dairy Science, 92(12), 5802-5813. doi: 10.3168/jds.2009-2549

Teobaldo, R. W., De Paula, N. F., Zervoudakis, J. T., Fonseca, M. A., Cabral, L. S., Martello, H. F., Rocha, L. K. J., Ribeiro, I. J., & Mundim, A. T. (2020). Inclusion of a blend of copaiba, cashew nut shell, and castor oil in the protein-energy supplement for grazing beef cattle improves rumen fermentation, nutrient intake, and fiber digestibility. Animal Production Science, 60(8), 1039-1050. doi: 10.1071/AN18725

Tomich, T. R., Gonçalves, L. C., Maurício, R. M., Pereira, L. G. R., & Rodrigues, J. A. S. (2003). Bromatological composition and rumen fermentation kinetics of hybrids from crosses of sorghum and sudangrass. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 55(6), 747-755. doi: 10.1590/S0102-09352003000600012

Udén, P., Robinson, P. H., Mateos, G. G., & Blank, R. (2012). Use of replicates in statistical analyses in papers submitted for publication in Animal Feed Science and Technology. Animal Feed Science and Technology, 171(1), 1-5. doi: 10.1016/j.anifeedsci.2011.10.008

Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2nd ed.). Cornell University Press.

Xue, L., Zhou, S., Wang, D., Zhang, F., Li, J., & Cai, L. (2022). The low dose of Saccharomyces cerevisiae is beneficial for rumen fermentation (both in vivo and in vitro) and the growth performance of heat-stressed goats. Microorganisms, 10(10), 1877. doi: 10.3390/microorganisms10101877

Yanez Ruiz, D. R., Moumen, A., Martin Garcia, A. I., & Molina Alcaide, E. (2004). Ruminal fermentation and degradation patterns, protozoa population, and urinary purine derivatives excretion in goats and wethers fed diets based on two-stage olive cake: effect of PEG supply. Journal of Animal Science, 82(7), 2023-2032. doi: 10.2527/2004.8272023x

Yang, C., Chowdhury, M. K., Hou, Y., & Gong, J. (2015). Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. Pathogens, 4(1), 137-156. doi: 10.3390/pathogens4010137

Zhang, X., Dong, X., Wanapat, M., Shah, A. M., Luo, X., Peng, Q., Kang, K., Guan, J., & Wang, Z. (2022). Ruminal pH pattern, fermentation characteristics, and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle. Animal Bioscience, 35(2), 184-195. doi: 10.5713/ab.21.0200

Downloads

Published

2025-06-23

How to Cite

Ormond, V. C., Cerisara, L. de A. C., Silva, E. P. da, Cunha, R. J. J., Cabral, L. da S., Fonseca, M. A., … Paula, N. F. de. (2025). Evaluation of natural additives on in vitro gas production kinetics and digestibility of Xaraés grass combined or not with dry fiber and solubles. Semina: Ciências Agrárias, 46(3), 965–982. https://doi.org/10.5433/1679-0359.2025v46n3p965

Issue

Section

Articles