Efeitos remediadores do uso de Sargassum stolonifolium sobre parâmetros fisiológicos e bioquímicos de Brassica chinensis L. sob solo contaminado por cádmio

Autores

DOI:

https://doi.org/10.5433/1679-0359.2022v43n5p1907

Palavras-chave:

Biossorvente, Brassica chinensis, Cádmio, Fitotoxicidade, Sargassum stolonifolium.

Resumo

Esta pesquisa foi realizada para examinar os efeitos de Sargassum stolonifolium na biossorção de cádmio em tecido de Brassica chinensis L., e a influência em parâmetros fisiológicos e antioxidantes em B. chinensis exposta ao estresse por cádmio. Foram avaliados níveis de Cd (50 mg e 100 mg), com ou sem S. stolonifolium (25g, 50g e 100g), em cinco repetições. Biomassa, pigmento fotossintético, teor relativo de água (RWC), malondialdeído (MDA), peróxido de hidrogênio (H2O2), 2,2-difenil-1-picrilhidrazil (DPPH), atividade antioxidante total (TAA), tiol não proteico (NPT), tiol proteico (PT), tiol ligado às proteínas, glutationa (GSH), fitoquelatinas, ascorbato peroxidase (APX), Catalase (CAT), superóxido dismutase (SOD) e guaiacol peroxidase (POD) foram determinados. Os resultados revelaram que o estresse por Cd reduziu significativamente (P < 0,05) a biomassa vegetal e os atributos fisiológicos, e acumulou maiores concentrações de Cd nos tecidos vegetais com o aumento da taxa de concentração de Cd no solo. No entanto, a incorporação de S. stolonifolium na dose de 100 g em solo aumentou a AF (40,6%) PD (72,2%) em relação ao respectivo tratamento sem S. stolonifolium. Da mesma forma, o acúmulo de Cd nas raízes, caule e folhas foi reduzido em 90,25%, 82,93% e 84,6%, respectivamente, comparando T1 e, assim, reduzindo os teores de MDA e H2O2 nas folhas em 40,1% e 68,8%, respectivamente, a 50 mg Cd kg-1 de solo enriquecido em relação a T0 e T1. Um aumento foi observado na clorofila a, b, carotenoide, SPAD e RWC de 114,6%, 20,7%, 73,7%, 44,8% e 6,3%, respectivamente, em relação ao controle. Aumento da concentração de NPT, TT, GSH e PCs em 66,7%, 49,1%, 60,1%, 96,1% e 3,4%, respectivamente, foi observado em T4 em relação a T0. As atividades das enzimas antioxidantes APX (92,8%), CAT (73,1%), SOD (20,9%) e POD (88,9%) aumentam em T4, em relação ao controle. S. stolonifolium tem potencial para promover o crescimento e aumentar o sistema de defesa de B. chinensis e reduzir os efeitos negativos da fitotoxicidade do cádmio, bem como a sua imobilização.

Downloads

Não há dados estatísticos.

Biografia do Autor

Umar Aliyu Abdullahi, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin

Graduate Student, School of Agriculture Science and Biotechnology, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia.

Mohammad Moneruzzaman Khandaker, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin

Senior Lecturer Dr., School of Agriculture Science and Biotechnology, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia.

Mekhled Mutiran Alenazi, King Saud University

Assistant Prof. Dr., Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.

Nurul Elyni Mat Shaari, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin

Graduate Student, School of Agriculture Science and Biotechnology, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia.

Nadiawati Alias, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin

Senior Lecturer Dr., School of Agriculture Science and Biotechnology, Faculty Bioresource and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia.

Referências

Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M. F., Abbas, F., Hannan, F., Rinklebe, J., & Ok, Y. S. (2017). Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 140, 37-47. doi: 10.1016/j.ecoenv.2017.02.028

Abdullahi, U. A., Khandaker, M. M., Shaari, N., Abdelmoaty, S., Badaluddin, N. H., & Alias, N. (2021). Implications of Brassicaceae cultivation in heavy metals contaminated environment: A phytoremediation point of view. Bioscience Research, 18(1), 906-913. https://www.isisn.org/BR18(1)2021/906-913-18(1) 2021BR20-504.pdf

Ahanger, M. A., Aziz, U., Alsahli, A., Alyemeni, M. N., & Ahmad, P. (2020). Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in Vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules, 10(1), 147. doi: 10. 3390/biom10010147

Ahmad, P., Nabi, G., & Ashraf, M. (2011). Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern., & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, 77(1), 36-44. doi: 10.1016/j.sajb.2010.05.003

Alam, M. Z., Braun, G., Norrie, J., & Hodges, D. M. (2013). Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Canadian Journal of Plant Science, 93(1), 23-36. doi: 10.4141/cjps2011-260

Al-Hamzawi, M. K. (2019). Effect of seaweed extract and micronutrients mixture on some growth characters andflowering of Dianthus chinensis L. and Gazania splender L. plants. IOP Conf. Series: Journal of Physics, Conf. Series 1294, 1294(9), 092001. doi: 10.1088/1742-6596/1294/9/092001

Azevedo, R., Alas, R., Smith, R., & Lea, P. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild type and a catalase deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. doi: 10.1034/j.1399-3054.1998.1040217.x

Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta, 212(5), 696-709. doi: 10.1007/s004250000439

Basak, A. (2008). Effect of preharvest treatment with seaweed products, Kelpak r and Goëmar BM 86 r, on fruit quality in apple. International Journal of Fruit Science, 8(1-2), 1-14. doi: 10.1080/1553836080236 5251

Beniwal, R. S., Hooda, M. S., & Polle, A. (2011). Amelioration of planting stress by soil amendment with a hydrogel mycorrhiza mixture for early establishment of beech (Fagus sylvatica L.) seedlings. Annals of Forest Science, 68(4), 803-810. doi: 10.1007/s13595-011-0077-z

Bhagyawant, S. S., Narvekar, D. T., Gupta, N., Bhadkaria, A., Koul, K. K., & Srivastava, N. (2019). Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. Physiology and Molecular Biology of Plants, 25(3), 683-696. doi: 10.1007/s12298-019-00667-3

Cavalcanti, F. R., Oliveira, J. T. A., Martins-Miranda, A. S., Viegas, R. A., & Silveira, J. A. G. (2004). Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt stressed cowpea leaves. New Phytologist, 163(3), 563-571. doi: 10.1111/j.1469-8137. 2004.01139.x

Chakraborty, N., Sarkar, A., & Acharya, K. (2020). Multifaceted roles of salicylic acid and jasmonic acid in plants against abiotic stresses. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, 374-388. doi: 10.1002/9781119552154.ch18

Chen, C.-T., Chen, T.-H., Lo, K.-F., & Chiu, C.-Y. (2004). Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Science, 166(1), 103-111. doi: 10.1016/j.plantsci.2003.08.015

Chen, X., Wang, J., Shi, Y., Zhao, M., & Chi, G. (2011). Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical Studies, 52(1), 41-46.

Corley, M., & Mutiti, S. (2017). The effects of lead species and growth time on accumulation of Lead in Chinese Cabbage. Global Challenges, 1(3), 1600020. doi: 10.1002/gch2.201600020

Cvetanovska, L., Klincharska-Jovanovska, I., Dimeska, G., Srbinoska, M., & Cvetanovska, A. (2010). Anatomic and physiological disorder after intoxication with heavy metals in tobacco (Nicotiana tabacum L.). Biotechnology & Biotechnological Equipment, 24(Sup1.), 4-9. doi: 10.1080/13102818.2010.108178 01

Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311-4330. doi: 10.1016/S0043-1354(03)00293-8

Demir, E., & Ozdener, Y. (2015). The effects of cadmium on the antioxidative responses of leaves of Brassica oleracea var. acephala. Fresenius Environmental Bulletin, 24(12C), 4729-4737. https://hero.epa.gov/hero/ index.cfm/reference/details/reference_id/3109964

Dong, Q., Fang, J., Huang, F., & Cai, K. (2019). Silicon amendment reduces soil Cd availability and Cd uptake of two Pennisetum species. International Journal of Environmental Research and Public Health, 16(9), 1624. doi: 10.3390/ijerph16091624

Drazkiewicz, M., Tukendorf, A., & Baszynski, T. (2003). Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation. Journal of Plant Physiology, 160(3), 247-254. doi: 10.1078/0176-1617-00558

Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W., Shakoor, M. B., & Rizwan, M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicology and Environmental Safety, 106, 164-172. doi: 10.1016/j.ecoenv.2014.03.007

El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M., Sebastian, A., Prasad, M., & Rinklebe, J. (2021). Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52(5), 675-726. doi: 10.1080/10643389.2020.1835435

Fan, D., Hodges, D. M., Critchley, A. T., & Prithiviraj, B. (2013). A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communications in Soil Science and Plant Analysis, 44(12), 1873-1884. doi: 10.1080/00103624.2013.790404

Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13(1), 45-55. doi: 10.1016/j.jssas.2013.01.001

Fike, J., Allen, V., Schmidt, R., Zhang, X., Fontenot, J., Bagley, C., Ivy, R., Evans, R., Coelho, R., & Wester, D. (2001). Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. Journal of Animal Science, 79(4), 1011-1021. doi: 10.2527/2001.7941011x

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418. doi: 10.1016/j.jenvman.2010.11.011

Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46. doi: 10.1016/j. envexpbot.2012.04.006

Gonçalves, J. F., Becker, A. G., Cargnelutti, D., Tabaldi, L. A., Pereira, L. B., Battisti, V., Spanevello, R. M., Morsch, V. M., Nicoloso, F. T., & Schetinger, M. R. (2007). Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian Journal of Plant Physiology, 19(3), 223-232. doi: 10.1590/S1677-04202007000300006

Guinan, K., Sujeeth, N., Copeland, R., Jones, P., O'brien, N., Sharma, H., Prouteau, P., & O'sullivan, J. (2012). Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. Proceeding of the World Congress on the Use of Biostimulants in Agriculture, Acta Horticulturae, 127-135. doi: 10.17660/ActaHortic.2013.1009.15

Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. doi: 10.1016/j.ecoenv.2020.111887

Hamid, Y., Tang, L., Yaseen, M., Hussain, B., Zehra, A., Aziz, M. Z., He, Z.-l., & Yang, X. (2019). Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere, 214, 259-268. doi: 10.1016/j. chemosphere.2018.09.113

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi: 10.1016/0003-98 61(68)90654-1

Hemida, K. A., Ali, R. M., Ibrahim, W. M., & Sayed, M. A. (2014). Ameliorative role of some antioxidant compounds on physiological parameters and antioxidants responses of wheat (Triticum aestivum L.) seedling under salinity stress. Life Science Journal, 11(7), 324-342. http://www.lifesciencesite.com/lsj/ life1107/038_23993life110714_324_342.pdf

Hou, M., Li, M., Yang, X., & Pan, R. (2019). Responses of nonprotein thiols to stress of vanadium and mercury in maize (Zea mays L.) seedlings. Bulletin of Environmental Contamination and Toxicology, 102(3), 425-431. doi: 10.1007/s00128-019-02553-w

Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., Wang, S., & Feng, Y. (2020). Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environmental Pollution, 264, 114677. doi: 10. 1016/j.envpol.2020.114677

Huang, W.-L., Chang, W.-H., Cheng, S.-F., Li, H.-Y., & Chen, H.-L. (2021). Potential risk of consuming vegetables planted in soil with lead and cadmium and the influence on vegetable antioxidant activity. Applied Sciences, 11(9), 3761. doi: 10.3390/app11093761

Ibrahim, W. M., Ali, R. M., Hemida, K. A., & Sayed, M. A. (2014). Role of Ulva lactuca extract in alleviation of salinity stress on wheat seedlings. The Scientific world journal, 2014, 1-11, doi: 10.1155/2014/847290

Ismail, M. (2016). Physiological responses of seaweeds extracts, benzyl adenine and paclobutrazol of wheat (Triticum aestivum L. Cultivar Misr 1) plants. International Journal of Advanced Research, 4(4), 1657-1668. doi: 10.21474/IJAR01/217

Jadia, C & Fulekar M. H., (2008). Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environmental Engineering and Management Journal, 7(5), 547-558. doi: 10.30638/eemj.2008.078

Jafarlou, M. B., Pilehvar, B., Modaresi, M., & Mohammadi, M. (2022). Seaweed liquid extract as an alternative biostimulant for the amelioration of salt-stress effects in Calotropis procera (Aiton) WT. Journal of Plant Growth Regulation, 1-16. doi: 10.1007/s00344-021-10566-1

Jalali, R., Ghafourian, H., Asef, Y., Davarpanah, S., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92(3), 253-262. doi: 10.1016/s0304-3894(02)00021-3

Jannin, L., Arkoun, M., Etienne, P., Laîné, P., Goux, D., Garnica, M., Fuentes, M., Francisco, S. S., Baigorri, R., & Cruz, F. (2013). Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. Journal of Plant Growth Regulation, 32(1), 31-52. doi: 10.1007/s00344-012-9273-9

Jayaprakasha, G. K., Jena, B. S., Negi, P. S., & Sakariah, K. K. (2002). Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production. Zeitschrift für Naturforschung C, 57(9-10), 828-835. doi: 10.1515/znc-2002-9-1013

Jiang, H., Yang, J., & Zhang, J. (2007). Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution, 147(3), 750-756. doi: 10.1016/j.envpol.2006.09.006

Jibril, S. A., Hassan, S. A., Ishak, C. F., & Megat Wahab, P. E. (2017). Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). Advances in Agriculture, 2017, 1-7. doi: 10.1155/2017/1236830

Jones, H. G. (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58(2), 119-130. doi: 10.1093/ jxb/erl118

Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145-3175. doi: 10.3390/ijms13033145

Kamran, M., Malik, Z., Parveen, A., Huang, L., Riaz, M., Bashir, S., Mustafa, A., Abbasi, G. H., Xue, B., & Ali, U. (2019). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. Journal of Environmental Management, 250, (2019), 109500. 1-16. doi: 10.1016/j.jenvman.2019.109500

Kasim, W. A. E.-A., Saad-Allah, K. M., & Hamouda, M. (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). International Journal of Agriculture and Biology, 18(3), 653-660. doi: 10.17957/IJAB/15.0152

Kasim, W. A., Hamada, E. A., El-Din, N. S., & Eskander, S. (2015). Influence of seaweed extracts on the growth, some metabolic activities and yield of wheat grown under drought stress. International. Journal. Agronomy and Agricultural Research, 7(2), 173-189. http://citeseerx.ist.psu.edu/viewdoc/download?doi =10.1.1.735.7156&rep=rep1&type=pdf

Khan, A. R., Wakeel, A., Muhammad, N., Liu, B., Wu, M., Liu, Y., Ali, I., Zaidi, S. H. R., Azhar, W., & Song, G. (2019). Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in Arabidopsis thaliana leaves. Environmental Science: Nano, 6(1), 341-355. doi: 10.1039/C8EN00971F

Kumar, G., & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23(2), 251-255. doi: 10.1007/s10811-011-9660-9

Kumari, R., Kaur, I., & Bhatnagar, A. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. Journal of Applied Phycology, 23(3), 623-633. doi:10.1007/s10811-011-9651-x

Latique, S., Mrid, R. B., Kabach, I., Kchikich, A., Sammama, H., Yasri, A., Nhiri, M., El Kaoua, M., Douira, A., & Selmaoui, K. (2021). Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L.). Agronomy, 11(2), 265. doi: 10.3390/agronomy11020265

Li, F.-T., Qi, J.-M., Zhang, G.-Y., Lin, L.-H., Fang, P.-P., Tao, A.-F., & Xu, J.-T. (2013). Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two kenaf (Hibiscus cannabinus L.) plant seedlings. Journal of Integrative Agriculture, 12(4), 610-620. doi: 10.1016/S2095-3119(13)60279-8

Lukasik, I., Woloch, A., Sytykieicz, H., Sprawka, I., & Golawska, S. (2019). Changes in the content of thiol compounds and the activity of glutathione s-transferase in maize seedlings in response to a rose grass aphid infestation. PLoS One, 14(8), e0221160. doi: 10.1371/journal.pone.0221160

Mahmoud, S. H., Salama, D. M., El-Tanahy, A. M., & Abd El-Samad, E. H. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences, 64(2), 167-175. doi: 10.1016/j.aoas.2019.11.002

Mattner, S., Wite, D., Riches, D., Porter, I., & Arioli, T. (2013). The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biological Agriculture & Horticulture, 29(4), 258-270. doi: 10.1080/01448765.2013.830276

Michel, G., Tonon, T., Scornet, D., Cock, J. M., & Kloareg, B. (2010). The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 188(1), 82-97. doi: 10.1111/j.1469-8137.2010.03374.x

Mishra, S., Srivastava, S., Tripathi, R., Govindarajan, R., Kuriakose, S., & Prasad, M. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 44(1), 25-37. doi: 10.1016/j.plaphy.2006.01.007

Moneruzzaman, K. M., Hossain, A. B. M. S., Amru, N. B., Saifudin, M., Imdadul, H., & Wirakarnain, S. (2010). Effect of sucrose and kinetin on the quality and vase life of 'Bougainvillea glabra' var. Elizabeth angus bracts at different temperatures. Australian Journal of Crop Science, 4(7), 474-479. http://www. cropj.com/khandaker2_4_7_2010_474_479.pdf

Montiel-Rozas, M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: an assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273-281. doi: 10.1016/ j.envpol.2016.05.080

Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 48(1), 1-7. doi: 10.1186/s40659-015-0001-3

Murphy, V., Hughes, H., & McLoughlin, P. (2007). Cu (II) binding by dried biomass of red, green and brown macroalgae. Water Research, 41(4), 731-740. doi: 10.1016/j.watres.2006.11.032

Murtaza, G., Javed, W., Hussain, A., Wahid, A., Murtaza, B., & Owens, G. (2015). Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environmental Science and Pollution Research, 22(12), 9136-9147. doi: 10.1007/s11356-015-4073-y

Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199-216. doi: 10.1007/s10311-010-0297-8

Nahar, K., Rahman, M., Hasanuzzaman, M., Alam, M., Rahman, A., Suzuki, T., & Fujita, M. (2016). Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environmental Science and Pollution Research, 23(21), 21206-21218. doi: 10.1007/s11356-016-7295-8

Nishikawa, E., Silva, M. G. C. da, & Vieira, M. G. A. (2018). Cadmium biosorption by alginate extraction waste and process overview in life cycle assessment context. Journal of Cleaner Production, 178, 166-175. doi: 10.1016/j.jclepro.2018.01.025

Nobossé, P., Fombang, E. N., & Mbofung, C. M. (2018). Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Science & Nutrition, 6(8), 2188-2198. doi: 10.1002/fsn3.783

Ok, Y. S., Lee, S. S., Jeon, W.-T., Oh, S.-E., Usman, A. R., & Moon, D. H. (2011). Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, 33(1), 31-39. doi: 10.1007/s10653-010-9362-2

Ortiz-Calderon, C., Silva, H. C. , & Vásquez, D. B. (2017). Metal Removal by Seaweed Biomass. Biomass Volume Estimation and Valorization for Energy. IntechOpen. https://doi.org/10.5772/65682

Pal, R., Kaur, R., Rajwar, D., & Narayan Rai, J. P. (2019). Induction of non-protein thiols and phytochelatins by cadmium in Eichhornia crassipes. International Journal of Phytoremediation, 21(8), 790-798. doi: 10. 1080/15226514.2019.1566881

Perveen, A., Wahid, A., Mahmood, S., Hussain, I., & Rasheed, R. (2015). Possible mechanism of medium-supplemented thiourea in improving growth, gas exchange, and photosynthetic pigments in cadmium-stressed maize (Zea mays). Brazilian Journal of Botany, 38(1), 71-79. doi: 10.1007/s40415-014-0124-8

Pompelli, M. F., França, S. C., Tigre, R. C., Oliveira, M. T. de, Sacilot, M., & Pereira, E. C. (2013). Spectrophotometric determinations of chloroplastidic pigments in acetone, ethanol and dimethylsulphoxide. Revista brasileira de Biociencias, 11(1), 52-58. http://www.ufrgs.br/seerbio/ojs/ index.php/rbb/article/view/228

Rafiq, M. T., Aziz, R., Yang, X., Xiao, W., Stoffella, P. J., Saghir, A., Azam, M., & Li, T. (2014). Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity. PLoS One, 9(11), e111461. doi: 10.1371/journal.pone.0111461

Raize, O., Argaman, Y., & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87(4), 451-458. doi: 10.1002/bit.20136

Rauser, W. E. (1987). Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiology, 85(1), 62-65. doi: 10.1104/pp.85.1.62

Rindi, F., Soler-Vila, A., Guiry, M. D. (2012). Taxonomy of Marine Macroalgae Used as Sources of Bioactive Compounds. In: M. Hayes (Ed.), Marine Bioactive Compounds. Springer, Boston, MA. doi: 10.1007/978-1-4614-1247-2_1

Rizwan, M., Ali, S., Abbas, T., Adrees, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Qayyum, M. F., & Nawaz, R. (2018). Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 206, 676-683. doi: 10.1016/j.jenvman.2017.10.035

Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M. I., & Ok, Y. S. (2016a). Cadmium minimization in wheat: a critical review. Ecotoxicology and Environmental Safety, 130, 43-53. doi: 10.1016/j.ecoenv.2016.04.001

Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., Qayyum, M. F., Hafeez, F., & Ok, Y. S. (2016b). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23(18), 17859-17879. doi: 10.1007/s11356-016-6436-4

Rochayati, S., Du Laing, G., Rinklebe, J., Meissner, R., & Verloo, M. (2011). Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: accumulation of cadmium and zinc in soils and shoots of maize plants. Journal of Plant Nutrition and Soil Science, 174(2), 186-194. doi: 10.1002/jpln.200800309

Romera, E., González, F., Ballester, A., Blázquez, M., & Munoz, J. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98(17), 3344-3353. doi: 10.1016/ j.biortech.2006.09.026

Ruiz-Espinoza, F. H., Murillo-Amador, B., Garcia-Hernandez, J. L., Fenech-Larios, L., Rueda-Puente, E. O., Troyo-Dieguez, E., Kaya, C., & Beltran-Morales, A. (2010). Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. Journal of Plant Nutrition, 33(3), 423-438. doi: 10.1080/01904160903470463

Saeed, Z., Naveed, M., Imran, M., Bashir, M. A., Sattar, A., Mustafa, A., Hussain, A., & Xu, M. (2019). Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS One, 14(3), e0213016. doi: 10.1371/journal. pone.0213016

Schmidt, R. (2005). Biostimulants function in turfgrass nutrition. Phd Emeritus Virginia Polytechnic, Blacksburg, Virginia, United States. http://livingturf.com.au/wp-content/uploads/2014/02/Prof-Schmidt-on-Biostimulants.pdf

Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25, 192-205. doi: 10.1016/0003-2697(68)90092-4

Shaari, N. E. M., Tajudin, M. T. F. M., Khandaker, M. M., Majrashib, A., Alenazi, M. M., Abdullahi, U. A., & Mohd, K. S. (2024). Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, 84, e252143. doi: 10.1590/1519-6984.252143

Shah, S. S., Mohammad, F., Shafi, M., Bakht, J., & Zhou, W. (2011). Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pakistan Journal of Botany, 43(1), 333-340. http://www.pakbs.org/pjbot/PDFs/43(1)/PJB43(1)333.pdf

Singh, P., & Tewari, R. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24(1), 107-112. https:// pubmed.ncbi.nlm.nih.gov/12974420/

Soares, A. M. (2011). Antioxidant system of ginseng under stress by cadmium. Scientia Agricola, 68(4), 482-488. doi: 10.1590/S0103-90162011000400014

Sofy, M. R., Sharaf, A., Osman, M. S., & Sofy, A. R. (2017). Physiological changes, antioxidant activity, lipid peroxidation and yield characters of salt stressed barely plant in response to treatment with Sargassum extract. International Journal of Advanced Research in Biological Sciences, 4(2), 90-109. doi: 10.22192/ ijarbs

Stiger-Pouvreau, V., Bourgougnon, N., & Deslandes, E. (2016). Carbohydrates from seaweeds. Joel Fleurence; Ira Levine. Seaweed in Health and Disease Prevention, Elsevier, (pp.223-274). doi: 10.1016/B978-0-12-802772-1.00008-7 (hal-02115014)

Sulaiman, F. R., Ibrahim, N. H., & Syed Ismail, S. N. (2020). Heavy metal (As, Cd, and Pb) concentration in selected leafy vegetables from Jengka, Malaysia, and potential health risks. SN Applied Sciences, 2(8), 1-9. doi: 10.1007/s42452-020-03231-x

Thapar, R., Srivastava, A. K., Bhargava, P., Mishra, Y., & Rai, L. C. (2008). Impact of different abiotic stresses on growth, photosynthetic electron transport chain, nutrient uptake and enzyme activities of Cu-acclimated Anabaena doliolum. Journal of Plant Physiology, 165(3), 306-316. doi: 10.1016/j.jplph.2007. 05.002

Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., & Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20(3), 181-189. doi: 10.1016/j.jtemb.2005.12.004

Trica, B., Delattre, C., Gros, F., Ursu, A. V., Dobre, T., Djelveh, G., Michaud, P., & Oancea, F. (2019). Extraction and characterization of alginate from an edible brown seaweed (Cystoseira barbata) harvested in the Romanian Black Sea. Marine Drugs, 17(7), 405. doi: 10.3390/md17070405

Tripathi, R., Rai, U., & Gupta, M. (1996). Induction of phytochelatins in Hydrilla verticillata (lf) Royle under cadmium stress. Bulletin of Environmental Contamination and Toxicology, 56(3), 505-512. doi: 10.1007/ s001289900073

Tukendorf, A., & Rauser, W. E. (1990). Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science, 70(2), 155-166. doi: 10.1016/0168-9452(90)90129-C

Ulusu, Y., Ozturk, L., & Elmastas, M. (2017). Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russian Journal of Plant Physiology, 64(6), 883-888. doi: 10.1134/ S1021443717060139

Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. doi: 10.1016/ S0168-9452(99)00197-1

Wilson, P. B., Estavillo, G. M., Field, K. J., Pornsiriwong, W., Carroll, A. J., Howell, K. A., Woo, N. S., Lake, J. A., Smith, S. M., & Harvey Millar, A. (2009). The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. The Plant Journal, 58(2), 299-317. doi: 10.1111/j.1365-313X.2008.03780.x

Wu, Q., Su, N., Cai, J., Shen, Z., & Cui, J. (2015). Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. Journal of Plant Physiology, 175, 174-182. doi: 10.3390/jof8010010

Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo, L., & Zhou, Z. (2019). Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. Journal of Environmental Management, 237, 128-138. doi: 10.1016/j.jenvman.2019.02.068

Xiong, Z., & Qiu, H. (2007). Salicylic acid alleviates the cadmium toxicity in Chinese cabbages (Brassica chinensis). Pakistan Journal of Biological Sciences: PJBS, 10(18), 3065-3071. doi: 10.3923/pjbs.2007. 3065.3071

Xu, C., & Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae, 183, 39-47. doi: 10.1016/j.scienta.2014.12. 004

Yan, S., Ling, Q., Bao, Z., Chen, Z., Yan, S., Dong, Z., Zhang, B., & Deng, B. (2009). Cadmium accumulation in pak choi (Brassica chinensis l.) and estimated dietary intake in the suburb of Hangzhou city, China. Food Additives and Contaminants: Part B, 2(1), 74-78. doi: 10.1080/02652030902991649

Zagorchev, L., Seal, C. E., Kranner, I., & Odjakova, M. (2013). A central role for thiols in plant tolerance to abiotic stress. International Journal of Molecular Sciences, 14(4), 7405-7432. doi: 10.3390/ijms140474 05

Zayed, A. E. A. F. (2018). Bioactive compounds from marine sources. PhD thesis, Technische Universität Kaiserslautern, Germany.

Zhou, W., & Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science, 169(4), 737-745. doi: 10.1016/j.plantsci.2005.05.030

Zhu, Z., Huang, Y., Wu, X., Liu, Z., Zou, J., Chen, Y., Su, N., & Cui, J. (2019). Increased antioxidative capacity and decreased cadmium uptake contribute to hemin-induced alleviation of cadmium toxicity in Chinese cabbage seedlings. Ecotoxicology and Environmental Safety, 177, 47-57. doi: 10.1016/j.ecoenv. 2019.03.113

Znad, H., Awual, M. R., & Martini, S. (2022). The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules, 27(4), 1275. doi: 10.3390/molecules27041275

Zodape, S., Gupta, A., Bhandari, S., Rawat, U., Chaudhary, D., Eswaran, K., & Chikara, J. (2011). Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). Journal of Scientific and indutrial research, 70(3), 215-219. http://nopr.niscpr.res.in/ bitstream/123456789/11089/4/JSIR%2070%283%29%20215-219.pdf

Downloads

Publicado

2022-06-15

Como Citar

Abdullahi, U. A., Khandaker, M. M., Alenazi, M. M., Shaari, N. E. M., & Alias, N. (2022). Efeitos remediadores do uso de Sargassum stolonifolium sobre parâmetros fisiológicos e bioquímicos de Brassica chinensis L. sob solo contaminado por cádmio. Semina: Ciências Agrárias, 43(5), 1907–1940. https://doi.org/10.5433/1679-0359.2022v43n5p1907

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)