Mapa de genes de resistência à ferrugem da folha em trigo ‘Guinong08-6’

Autores

  • Luhua Li Guizhou University https://orcid.org/0000-0002-6212-2105
  • Jianshu Sui Guizhou Drought Grain Sorghum Research Institute
  • Mingjian Ren Guizhou University
  • Ruhong Xu Guizhou University

DOI:

https://doi.org/10.5433/1679-0359.2023v44n2p601

Palavras-chave:

Puccinia triticina, SSR, Genes dominantes complementares, Gene de resistência.

Resumo

A ferrugem da folha do trigo (Puccinia triticina Eriks.), importante doença do trigo em todo o mundo, causa graves perdas de rendimento e, portanto, o desenvolvimento de cultivares resistentes é muito importante. Nesta pesquisa, uma linhagem chinesa de trigo (Guinong08-6) mostrou resistência de plantas adultas a uma mistura de isolados do patógeno, , na região de Guiyang, China. Essa linhagem foi cruzada com uma linhagem suscetível de trigo (Guinong19) para desenvolver híbridos F1, F2 e F3. Combinados de marcadores SSR e STS foram usados para mapear genes de resistência à ferrugem da folha em Guinong08-6, e o fenótipo de resistência de Guinong08-6 foi co-regulado por dois genes dominantes complementares, chamados LrGn08-6A e LrGn08-6B. LrGn08-6A foi mapeado para o cromossomo 2AS com marcadores URIC-LN2 e Xgpw2204, que flanquearam o gene em distâncias de 1,8 centimorgano (cM) e 14,83 cM, respectivamente. LrGn08-6B foi mapeado para o cromossomo 4DL com marcadores Xgpw342 e Xbarc93, e ambos flanquearam o gene a uma distância de 26,57 cM. As análises genéticas e moleculares de marcadores demonstraram que LrGn08-6A, que foi herdado de Aegilops ventricosa, pode ser o gene de resistência Lr37, enquanto LrGn08-6B pode ser um gene recentemente descoberto de resistência à ferrugem da folha do trigo.

Métricas

Carregando Métricas ...

Biografia do Autor

Luhua Li, Guizhou University

Profs. Drs., College of Agriculture, Guizhou University, Guiyang, Guizhou, China.

Jianshu Sui, Guizhou Drought Grain Sorghum Research Institute

Associate Researcher, Guizhou Drought Grain Sorghum Research Institute, Guiyang, Guizhou, China.

Mingjian Ren, Guizhou University

Prof. Dr., Guizhou Sub-center of National Wheat Improvement Center, Guiyang, Guizhou, China.

Ruhong Xu, Guizhou University

Prof.  Dr., College of Agriculture, Guizhou University, Guiyang, Guizhou, China.

Referências

Bansal, U. K., Forrest, K. L., Hayden, M. J., Miah, H., Singh, D., & Bariana, H. S. (2011). Characterization of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theoretical and Applied Genetics, 122(8), 1461-1466. doi: 10.1007/s00122-011-1545-4 DOI: https://doi.org/10.1007/s00122-011-1545-4

Bariana, H. S., & McIntosh, R. A. (1993). Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 36(3), 476-482. doi: 10.1139/g93-065 DOI: https://doi.org/10.1139/g93-065

Basnet, B. R., Singh, R. P., Herrera-Foessel, S. A., Ibrahim, A. M. H., HuertaEspino, J., Calvo-Salazar, V., & Rudd, J. C. (2013). Genetic analysis of adult plant resistance to yellow rust and leaf rust in common spring wheat Quaiu 3. Plant Disease, 97(6), 728-736. doi: 10.1094/PDIS-02-12-0141-RE DOI: https://doi.org/10.1094/PDIS-02-12-0141-RE

Błaszczyk, L., Goyeau, H., Huang, X. Q., Röder, M., Stepień, L., & Chełkowski, J. (2004). Identifying leaf rust resistance genes and mapping gene Lr37 on the microsatellite map of wheat. Cellular & Molecular Biology Letters, 9(4B), 869-878. doi: 10.1007/s00018-003-3367-2 DOI: https://doi.org/10.1007/s00018-003-3367-2

Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9(5), 563-575. doi: 10.1111/j.1364-3703.2008.00487.x DOI: https://doi.org/10.1111/j.1364-3703.2008.00487.x

Dracatos, P. M., Zhang, P., Park, R. F., McIntosh, R. A., & Wellings, C. R. (2006). Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust. Theoretical and Applied Genetics, 129(1), 65-76. doi: 10.1007/s00122-015-2609-7 DOI: https://doi.org/10.1007/s00122-015-2609-7

Ellis, J. G., Lagudah, E. S., Spielmeyer, W., & Dodds, P. N. (2014). The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 5(641), 1-13. doi: 10.3389/fpls.2014.00641 DOI: https://doi.org/10.3389/fpls.2014.00641

Gebrewahid, T. W., Zhou, Y., Zhang, P. P., Ren, Y., Gao, P., Xia, X. C., He, Z. H., Li, Z. F., & Li, D. Q. (2020). Mapping of stripe rust and leaf rust resistance quantitative trait loci in the Chinese spring wheat line Mianyang351-15. Phytopathology, 110(5), 1074-1081. doi: 10.1094/PHYTO-08-19-0316-R DOI: https://doi.org/10.1094/PHYTO-08-19-0316-R

Helguera, M., Khan, I. A., Kolmer, J., Lijavetzky, D., Zhong-qi, L., & Dubcovsky, J. (2003). PCR assays for the cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science, 43(5), 1839-1847. doi: 10.2135/cropsci2003.1839 DOI: https://doi.org/10.2135/cropsci2003.1839

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Rosewarne, G. M., Periyannan, S. K., Viccars, L., Calvo-Salazar, V., Lan, C., & Lagudah, E. S. (2012). Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 124(8), 1475-1486. doi: 10.1007/s00122-012-1802-1 DOI: https://doi.org/10.1007/s00122-012-1802-1

Herrera-Foessel, S. A., Singh, R. P., Lillemo, M., Huerta-Espino, J., Bhavani, S., Singh, S., Lan, C., Calvo-Salazar, V., & Lagudah, E. S. (2014). Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 127(4), 781-789. doi: 10.1007/s00122-013-2256-9 DOI: https://doi.org/10.1007/s00122-013-2256-9

Hiebert, C. W., Thomas, J. B., McCallum, B. D., Humphreys, D. G., DePauw, R. M., Hayden, M. J., Mago, R., Schnippenkoetter, W., & Spielmeyer, W. (2010). An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics, 121(6), 1083-1091. doi: 10.1007/s00122-010-1373-y DOI: https://doi.org/10.1007/s00122-010-1373-y

Juliana, P., Singh, R. P., Singh, P. K., Crossa, J., Huerta-Espino, J., Lan, C., Bhavani, S., Rutkoski, J. E., Poland, J. A., Bergstrom, G. C., & Sorrells, M. E. (2017). Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theoretical and Applied Genetics, 130(7), 1415-1430. doi: 10.1007/s00122-017-2897-1 DOI: https://doi.org/10.1007/s00122-017-2897-1

Kole, C., Muthamilarasan, M., Henry, R., Edwards, D., Sharma, R., Abberton, M., Batley, J., Bentley, A., Blakeney, M., Bryant, J., Cai, H., Cakir, M., Cseke, L. J., Cockram, J., de Oliveira, A. C., De Pace, C., Dempewolf, H., Ellison, S., Gepts, P.,…. Prasad, M. (2015). Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 6(3), 563. doi: 10.3389/fpls.2015.00563 DOI: https://doi.org/10.3389/fpls.2015.00563

Kolmer, J. A., Su, Z., Bernardo, A., Bai, G., & Chao, S. (2018). Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. Theoretical and Applied Genetics, 131(7), 1553-1560. doi: 10.1007/s00122-018-3097-3 DOI: https://doi.org/10.1007/s00122-018-3097-3

Kwiatek, M., Błaszczyk, L., Wiśniewska, H., & Apolinarska, B. (2012). Aegilops-Secale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes. Journal of Applied Genetics, 53(1), 37-40. doi: 10.1007/s13353-011-0071-z DOI: https://doi.org/10.1007/s13353-011-0071-z

McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., & Xia, X. C. (2017). Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

Millet, E., Manisterski, J., Benyehuda, P., Distelfeld, A., & Deek, J. (2014). Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome, 57(6), 309-316. doi: 10.1139/gen-2014-0004 DOI: https://doi.org/10.1139/gen-2014-0004

Pasam, R. K., Bansal, U., Daetwyler, H. D., Forrest, K. L., Wong, D., Petkowski, J., Willey, N., Randhawa, M., Chhetri, M., Miah, H., Tibbits, J., Bariana, H., & Hayden, M. J. (2017). Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using Bayes R and mixed linear model approaches. Theoretical and Applied Genetics, 130(4), 777-793. doi: 10.1007/s00122-016-2851-7 DOI: https://doi.org/10.1007/s00122-016-2851-7

Peng, F. Y., & Yang, R. C. (2017). Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum Aestivum L.). BMC Plant Biology, 108(1), 1-17. doi: 10.1186/s12870-017-1056-9 DOI: https://doi.org/10.1186/s12870-017-1056-9

Prasad, P., Savadi, S., Bhardwaj, S. C., & Gupta, P. K. (2020). The progress of leaf rust research in wheat. Fungal Biology, 124(6), 537-550. doi: 10.1016/j.funbio.2020.02.013 DOI: https://doi.org/10.1016/j.funbio.2020.02.013

Roelfs, A. P. (1984). Race specificity and methods of study. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-148401-9.50011-X

Singh, R. P., Huerta-Espino, J., Rajaram, S., Barna, B., & Kiraly, Z. (2000). Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica Et Entomologica Hungarica, 35(1), 133-139.

Singh, R. P., Huerta-Espino, J., Bhavani, S., Herrera-Foessel, S. A., Singh, D., Singh, P. K., Velu, G., Mason, R. E., Jin, Y., Njau, P., & Crossa, J. (2011). Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 179(1), 175-186. doi: 10.1007/s10681-010-0322-9 DOI: https://doi.org/10.1007/s10681-010-0322-9

Stepień, L., Golka, L., & Chełkowski, J. (2003). Leaf rust resistance genes of wheat: identification in cultivars and resistance sources. Journal of Applied Genetics, 44(2), 139-149.

Tanguy, A. M., Coriton, O., Abélard, P., Dedryver, F., & Jahier, J. (2005). Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome, 48(3), 541-546. doi: 10.1139/g05-001 DOI: https://doi.org/10.1139/g05-001

Lu, Y., Bowden, R. L., Zhang, G., Xu, X., Fritz, A. K., & Bai, G. (2017). Quantitative trait loci for slow-rusting resistance to leaf rust in doubled haploid wheat population CI13227 x Lakin. Phytopathology, 107(11), 1372-1380. doi: 10.1094/PHYTO-09-16-0347-R DOI: https://doi.org/10.1094/PHYTO-09-16-0347-R

Wu, J. Q., Sakthikumar, S., Dong, C., Zhang, P., Cuomo, C. A., & Park, R. F. (2017). Comparative genomics integrated with association analysis identifies candidate effector genes corresponding to Lr20 in phenotype-paired Puccinia triticina isolates from Australia. Frontiers in Plant Science, 8(148), 1-19. doi: 10.3389/fpls.2017.00148 DOI: https://doi.org/10.3389/fpls.2017.00148

Zhou, Y., Ren, Y., Lillemo, M., Yao, Z., Zhang, P., Xia, X., He, Z., Li, Z., & Liu, D. (2014). QTL mapping of adult-plant resistance to leaf rust in a RIL population derived from a cross of wheat cultivars Shanghai 3/Catbird and Naxos. Theoretical and Applied Genetics, 127(9), 1873-1883. doi: 10.1007/s00122-014-2346-3 DOI: https://doi.org/10.1007/s00122-014-2346-3

Downloads

Publicado

2023-05-03

Como Citar

Li, L., Sui, J., Ren, M., & Xu, R. (2023). Mapa de genes de resistência à ferrugem da folha em trigo ‘Guinong08-6’. Semina: Ciências Agrárias, 44(2), 601–612. https://doi.org/10.5433/1679-0359.2023v44n2p601

Edição

Seção

Artigos