Efeitos da insulina sobre a qualidade das células espermáticas no sêmen ovino refrigerado a 5 oC
DOI:
https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3803Palavras-chave:
Diluidor seminal, Espermatozoides, Glicose, Ovinos e Resfriamento.Resumo
A insulina está presente no plasma seminal e participa de atividades espermáticas, como a motilidade e capacitação. Entretanto, os efeitos da insulina sobre a viabilidade do espermatozoide ovino resfriado ainda não estão elucidadas. Desta forma, o objetivo do presente estudo foi avaliar os efeitos da adição de insulina sobre o espermatozoide ovino durante o tempo de armazenamento à 5º C. Amostras espermáticas de seis carneiros da raça Santa Inês foram utilizadas. Os ejaculados foram divididos em duas aliquotas, com (grupo insulina) ou sem (grupo controle) adição de insulina (3 UI mL-1) no diluidor seminal e, posteriormente, resfriados até 5oC e mantidos armazenados por 48 horas. Em seguida, os espermatozoides foram avaliados quanto a motilidade e cinética utilizando um Sistema Computadorizado de Análise de Sêmen (CASA). Adicionalmente, as amostras espermáticas foram analizadas quanto a integridade acrosomal por meio de sondas fluorescentes (FITC-PNA) e, funcionalidade de membrana pelo teste hiposmótico. As análises seminais foram realizadas após 24 ou 48 horas de resfriamento. Foram verificados aumentos de espermatozoides com motilidade progressiva (%), retilinearidade (%), linearidade (%) e frequência de batimento caudal (BCF) (Hz) no grupo insulina após 24 ou 48 horas de resfriamento (p < 0.05). Entretanto, não houve efeito da adição de insulina sobre a porcentagem de espermatozoides moveis (%) e das velocidades espermáticas (VSL, VAP e VCL) (µm seg-1), integridade acrossomal e funcionalidade de membrana durante o resfriamento (p > 0.05). Conclui-se que adição de insulina (3 UI mL-1) no diluidor seminal melhora a qualidade da motilidade espermática durante o resfriamento.Downloads
Referências
Aitken, R. J., Curry, B. J., Shokri, S., Pujianto, D. A., Gavriliouk, D., Gibb, Z. Baker, M. A. (2021). Evidence that extrapancreatic insulin production is involved in the mediation of sperm survival. Molecular and Cellular Endocrinology, 526(1), 111193. doi: 10.1016/j.mce.2021.111193
Baumgard, L. H., Hausman, G. J., & Sanz Fernandez, M. V. (2016). Insulin: pancreatic secretion and adipocyte regulation. Domestic Animal Endocrinology, 54(1), 76-84. doi: 10.1016/j.domaniend.2015. 07.001
Cappello, A. R., Guido, C., Santoro, A., Santoro, M., Capobianco, L., Montanaro, D., Aquila, S. (2012). The mitochondrial citrate carrier (CIC) is presented and regulates insulin secretion by human male gamete. Endocrinology, 153(1), 1743-1754. doi: 10.1210/en.2011-1562
Carpino, A., Rago, V., Guido, C., Casaburi, I., & Aquila, S. (2010) Insulin and IR-beta in pig spermatozoa: a role of the hormone in the acquisition of fertilizing ability. International Journal of Andrology, 33(1), 554-562. doi: 10.1111/j.1365-2605.2009.00971.x
Cunha, E. C. P., Zangeronimo, M. G., Murgas, L. D. S., Braga, D. E., Pereira, B. A., Rocha, L. G. P.,... Pereira, L. J. (2012). Insulin addition to swine semen diluted and cooled at 15 ºC. Revista Brasileira de Zootecnia, 41(1), 1060-1064. doi: 10.1590/S1516-35982012000400031
Curtis, M. P., Kirkman-Brown, J. C., Connolly, T. J., & Gaffney, E. A. (2012). Modelling a tethered mammalian sperm cell undergoing hyperactivation. Journal of Theoretical Biology, 309(1), 1-10. doi: 10.1016/j.jtbi.2012.05.035
Dias, T. R., Alves, M. G., Silva, B. M., & Oliveira, P. F. (2014). Sperm glucose transport and metabolism in diabetic individuals. Molecular and Cellular Endocrinology, 396(1), 37-45. doi: 10.1016/j.mce.2014. 08.005
El-Badry, D. A., El Sisy, G. A., & Abo El-Maaty, A. M. (2016). Seminal plasma hormonal profile of Arabian stallions that are classified ‘good’ or ‘poor’ for semen freezing. Asian Pacific Journal of Reproduction, 5(6), 453-458. doi: 10.1016/j.apjr.2016.10.012
Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J. P., & Bollwein, H. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86(2), 562-571. doi: 10.1016/j.theriogenology.2016.02.007
Hering, D. M., Olenski, K., & Kaminski, S. (2014). Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Animal Reproduction Science, 146(3-4), 89-97. doi: 10.1016/j. anireprosci. 2014.01.012
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2012). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Osteoarthritis and Cartilage, 20(4), 256-260. doi: 10.1016/j.joca.2012.02.010
Laskowski, D., Sjunnesson, Y., Humblot, P., Andersson, G., Gustafsson, H., & Båge, R. (2016). The functional role of insulin in fertility and embryonic development - What can we learn from the bovine model? Theriogenology, 86(1), 457-464. doi: 10.1016/j.theriogenology.2016.04.062
Leisegang, K., Bouic, P. J., Menkveld, R., & Henkel, R. R. (2014). Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reproductive Biology and Endocrinology, 12(34), 34. doi: 10.1186/1477-7827-12-34
Makarevich, A., Spalekova, E., Olexikova, L., Kubovicova, E., & Hegedusova, Z. (2014). Effect of insulin-like growth factor I on functional parameters of ram cooled-stored spermatozoa. Zygote, 22(3), 305-313. doi: 10.1017/S0967199412000500
Meneses, M. J., Borges, D. O., Dias, T. R., Martins, F. O., Oliveira, P. F., Macedo, M. P., & Alves, M. G. (2019). Knockout of insulin-degrading enzyme leads to mice testicular morphological changes and impaired sperm quality. Molecular and Cellular Endocrinology, 486(1), 11-17. doi: 10.1016/j. mce.20 19.02.011
Morris, G. J., Acton, E., Murray, B. J., & Fonseca, F. (2012). Freezing injury: the special case of the sperm cell. Cryobiology, 64(2), 71-80. doi: 10.1016/j.cryobiol.2011.12.002
Palacín, I., Yániz, J. L., Fantova, E., Blasco, M. E., Quintín-Casorrán, F. J., Sevilla-Mur, E., & Santolaria, P. (2012). Factors affecting fertility after cervical insemination with cooled semen in meat sheep. Animal Reproduction Science, 132(3), 139-144. doi: 10.1016/j.anireprosci.2012.05.005
Pergialiotis, V., Prodromidou, A., Frountzas, M., Korou, L. M., Vlachos, G. D., & Perrea, D. (2016). Diabetes mellitus and functional sperm characteristics: A meta-analysis of observational studies. Journal of Diabetes and Its Complications, 30(6), 1167-1176. doi: 10.1016/j.jdiacomp.2016.04.002
Selvaraju, S., Krishnan, B. B., Archana, S. S., & Ravindra, J. P. (2016). IGF1 stabilizes sperm membrane proteins to reduce cryoinjury and maintain post-thaw sperm motility in buffalo (Bubalus bubalis) spermatozoa. Cryobiology, 73(1), 55-62. doi: 10.1016/j.cryobiol.2016.05.012
Shokri, S., Ebrahimi, S. M., Ziaeipour, S., & Nejatbakhsh, R. (2019). Effect of insulin on functional parameters of human cryopreserved sperms. Cryobiology, 87(1), 68-73. doi: 10.1016/j.cryobiol.2019. 02.002
Silva, D. M., Zangeronimo, M. G., Murgas, L. D. S., Rocha, L. G. P., Chaves, B. R., Pereira, B. A., & Cunha, E. C. P. (2011) Addition of IGF-I to storage-cooled boar semen and its effect on sperm quality. Growth Hormone & IGF Research, 21(6), 325-330. doi: 10.1016/j.ghir.2011.08.002
Srivastava, N., Srivastava, S. K., Ghosh, S. K., Kumar, A., Perumal, P., & Jerome, A. (2013). Acrosome membrane integrity and cryocapacitation are related to cholesterol content of bull spermatozoa. Asian Pacific Journal of Reproduction, 2(2), 126-131. doi: 10.1016/S2305-0500(13)60132-3
van Tilburg, M. F., Silva, J. F. S., Dias, A. J. B., Quirino, C. R., & Fagundes, B. (2008). Influência da insulina na congelabilidade do sêmen de ovino. Ciência Animal Brasileira, 9(3), 731-739.
Wang, G., Guo, Y., Zhou, T., Shi, X., Yu, J., Yang, Y.,... Sha, J. (2013). In-depth proteomic analysis of the human sperm reveals complex protein compositions. Journal of Proteomics, 79(1), 114-122. doi: 10.10 16/j.jprot.2012.12.008
Weerakoon, W. W. P. N., Sakase, M., Kohama, N., & Kawate, N. (2020). Plasma estradiol-17β, cortisol, and insulin concentrations and serum biochemical parameters surrounding puberty in Japanese Black beef bulls with normal and abnormal semen. Theriogenology, 148(1), 18-26. doi: 10.1016/j.theriogenology. 2020.02.035
Yániz, J. L., Palacín, I., Vicente-Fiel, S., Sánchez-Nadal, J. A., & Santolaria, P. (2015). Sperm population structure in high and low field fertility rams. Animal Reproduction Science, 156(1), 128-134. doi: 10. 1016/j.anireprosci.2015.03.012
Zhu, Z., Umehara, T., Tsujita, N., Kawai, T., Goto, M., Cheng, B.,... Shimada, M. (2020). Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis. Free Radical Biology and Medicine, 159(1), 44-53. doi: 10.1016/j.freeradbiomed. 2020.07.008
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.