Chemical characterization and in vitro antimicrobial activity of honeybee propolis and Scaptotrigona jujuyensis geopropolis against tomato pathogenic bacteria

Authors

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5p1799

Keywords:

Apis mellifera, HPLC-DAD, Scaptotrigona jujuyensis, Tomato phytopathogens, Total polyphenol content.

Abstract

The antimicrobial activity of four concentrations of hydroalcoholic extracts from honeybee propolis and Scaptotrigona jujuyensis geopropolis was screened in vitro against five tomato pathogenic bacteria. The agar-well diffusion method was used and the tested bacteria were Clavibacter michiganensis subsp. michiganensis, Xanthomonas gardneri, Xanthomonas vesicatoria, Pseudomonas corrugata, and Pseudomonas mediterranea. The main chemical characteristics of propolis and geopropolis, including the polyphenol profile through HPLC-DAD, were also determined. Geopropolis raw sample presented higher values of moisture (7.78%), waxes (50.79%) and ashes (3.69%) than propolis (4.59%, 31.16% and 2.42% respectively). The total polyphenol content and the dry extract were higher in propolis hydroalcoholic extract (3.83 mg eq galic acid mL-1 and 7.87%, respectively) than in the extract of geopropolis (0.16 mg eq galic acid mL-1 and 0.15%, respectively). Chromatographic analysis confirmed the presence of caffeic acid, quercetin, 1,5,7-trihydroxy-flavanone, apigenin, pinobanksin, chrysin, pinocembrin, and galangin in both extracts. The antimicrobial assay showed significant differences between the hydroalcoholic extract activities, as well as between the sensitivity of the tested bacteria. Propolis hydroalcoholic extract dilutions had an inhibitory effect over four of the five tested bacteria, while geopropolis hydroalcoholic extract dilutions were only effective against C. michiganensis subsp. michiganensis, and to a lesser extent. The sequence of bacteria sensitivity to propolis treatments was: C. michiganensis subsp. michiganensis > X. gardneri > X. vesicatoria > P. corrugata. Pseudomonas mediterranea was not sensitive to any of the hydroalcoholic extracts. The antimicrobial activity of both extracts was dose-dependent where the most concentrated treatments were the most effective (15.0 mg mL?1 of geopropolis and 78.7 mg mL?1 of propolis dry extract, respectively). The polyphenol content and the HPLC-DAD profile of the hydroalcoholic extracts disclosed differences in chemical composition that helped to explain the outcomes of the in vitro assay. These results are a contribution to the characterization of bee bioactive products, specifically to propolis and geopropolis. This study indicates the likelihood of using propolis as a non-conventional strategy to control tomato bacterial diseases.

Downloads

Download data is not yet available.

Author Biographies

Irene Laura Cibanal, Universidad Nacional Del Sur

Estudiante de Doctorado, Laboratorio de Estudios Apícolas (UNS-CIC), Departamento de Agronomía, Universidad Nacional Del Sur, UNS, Bahía Blanca, Bs. As., Argentina.

Leticia Andrea Fernández, Universidad Nacional Del Sur

Dra, Laboratorio de Estudios Apícolas (UNS-CIC), Departamento de Agronomía, Universidad Nacional Del Sur, UNS, Bahía Blanca, Bs. As., Argentina.

Giovanni Galietta Positano, Universidad de la República Uruguay

Prof., Unidad de Tecnología de Alimentos, Facultad de Agronomía, Universidad de la República Uruguay, UdelaR, Montevideo, Uruguay.

Lucía Bóffano Chebataroff, Facultad de Agronomía, Universidad de la República

Estudiante de Agronomía, Facultad de Agronomía, Universidad de la República, UdelaR, Salto, Uruguay.

Antonio Francisco Garayalde, Universidad Nacional del Sur

Dr., Departamento de Matemática, Universidad Nacional del Sur, UNS, Bahía Blanca, Bs. As., Argentina.

Liliana María Gallez, Universidad Nacional Del Sur

Profa Ing. Agr. (Mg.), Universidad Nacional Del Sur, Laboratorio de Estudios Apícolas (UNS-CIC), UNS, Bahía Blanca, Bs. As., Argentina.

Elisa Silvera Pérez, Facultad de Agronomía, Universidad de la República

Profa Dra, Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, UdelaR, Salto, Uruguay.

References

Balestra, G. M., Heydari, A., Ceccarelli, D., Ovidi, E., & Quattrucci, A. (2009). Antibacterial effect of Allium Sativum and Ficus Carica extracts on tomato bacterial pathogens. Crop Protection, 28(10), 807-811. doi: 10.1016/j.cropro.2009.06.004

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2), 71-79. doi: 10.1016/j.jpha.2015.11.005

Basim, E., Hüseyin, B., & Özcan, M. (2006). Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engineering, 77(4), 992-96. doi: 10.1016/j.jfoodeng.2005.08.027

Bedascarrasbure, E., Maldonado, L. M., Fierro Morales, W., & Alvarez, A. R. (2006). Propóleos. caracterización y normalización de propóleos argentinos. Revisión y actualización de composición y propiedades. Buenos Aires: Ediciones Magna.

Brodkiewicz, Y., Marcinkevicius, K., Reynoso, M., Salomon, V., Maldonado, L., & Vera, N. (2018). Studies of the biological and therapeutic effects of argentine stingless bee propolis. Journal of Drug Delivery and Therapeutics, 8(5), 382-392. doi: 10.22270/jddt.v8i5.1889

Cibanal, I., Fernández, L. A., Krepper, G., Pellegrini, C., & Gallez, L. M. (2019). Advances in the development of a biofungicide: physical-chemical characterization and antifungal activity of propolis. Agrociencia, 23(2), 1-10. doi: 10.31285/AGRO.23.83

Dreier, J., Bermpohl, A., & Eichenlaub, R. (1995). Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology, 85(4), 462-468.

Fernandez, L. A., Cibanal, I. L., Paraluppi, A. L., De Freitas, C., Gallez, L. M., & Ceccato Antonini, S. R. (2019). Propolis as a potential alternative for the control of Dekkera bruxellensis in bioethanol fermentation. Semina: Ciências Agrárias, 40(5), 2071-2078. doi: 10.5433/1679-0359.2019v40n5p2071

Ghisalberti, E. L. (1979). Propolis: a review. Bee world, 60(2), 59-84. doi: doi.org/10.1080/0005772X.1979.11097738

İnşaatçı, Ö., & Turan, N. Y. (2018). A new antibacterial agent: propolis. SSRG International Journal of Polymer and Textile Engineering, 5(3), 21-25.

Kasote, D. M., Pawar, M. V., Bhatia, R. S., Nandre, V. S., Gundu, S. S., Jagtap, S. D., & Kulkarni, M. V. (2017). HPLC, NMR based chemical profiling and biological characterisation of Indian propolis. Fitoterapia, 122(2017), 52-60. doi: 10.1016/j.fitote.2017.08.011

Lavinas, F. C., Macedo, E. H., Sá, G. B. L., Amaral, A. C. F., Silva, J. R. A., Azevedo, M. M. B.,... Rodríguez, I. A. (2019). Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. Brazilian Journal of Pharmacognosy, 29(3), 389-399. doi: 10.1016/j.bjp.2018.11.00

Mendes Araújo, M., Bufalo, M., Conti, B., Fernandes, A. J., Trusheva, B., Bankova, V., & Sforcin J. (2015). The chemical composition and pharmacological activities of geopropolis produced by Melipona fasciculata Smith in northeast Brazil. Journal of Molecular Pathophysiology, 4(1), 12-20. doi: 20150204115607

Popova, M., Silici, S., Kaftanoglu, O., & Bankova, V. (2005). Antibacterial activity of Turkish propolis nd its qualitative and quantitative chemical composition. Phytomedicine, 12(3), 221-228. doi:10.1016/j.phymed.2003.09.007

Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria. St. Paul, MN: American Phytopathological Society (APS Press).

Sforcin, J. M., & Bankova, V. (2011). Propolis: is there a potential for the development of new drugs? Journal of Ethnopharmacology, 133(2), 253-260. doi: 10.1016/j.jep.2010.10.032

Silva Araújo, K. S. da, Santos, J. F. D. Jr., Sato, M. O., Finco, F. D. B. A., Soares, I. M., Barbosa, R. D. S., & Mariano, S. M. B. (2016). Physicochemical properties and antioxidant capacity of propolis of stingless bees (Meliponinae) and Apis from two regions of Tocantins, Brazil. Acta Amazonica, 46(1), 61-68. doi: 10.1590/1809-4392201501045

Silva Frozza, C. O. D., Garcia, C. S. C., Gambato, G., Souza, M. D. O., Salvador, M. de, Moura, S.,... Roesch-Ely, M. (2013). Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and Chemical Toxicology, 52(2013), 137-142. doi: 10.1016/j. fct.2012.11.013

Tosi, B., Donini, A., Romagnoli, C., & Bruni, A. (1996). Antimicrobial activity of some commercial extracts of propolis prepared with different solvents. Phytotherapy research, 10(4), 335-336. doi: 10.1002/(SICI)1099-1573(199606)10:4<335::AID-PTR828>3.0.CO;2-7

Wagh, V. D. (2013). Propolis: a wonder bees product and its pharmacological potentials. Advances in Pharmacological Sciences, 2013(1), 1-11. doi: 10.1155/2013/308249

Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A., & Harayama, S. (2000). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology, 146(10), 2385-2394. doi: 10.1099/00221287-146-10-2385

Downloads

Published

2020-06-17

How to Cite

Cibanal, I. L., Fernández, L. A., Positano, G. G., Chebataroff, L. B., Garayalde, A. F., Gallez, L. M., & Pérez, E. S. (2020). Chemical characterization and in vitro antimicrobial activity of honeybee propolis and Scaptotrigona jujuyensis geopropolis against tomato pathogenic bacteria. Semina: Ciências Agrárias, 41(5), 1799–1808. https://doi.org/10.5433/1679-0359.2020v41n5p1799

Issue

Section

Communication

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.