Artificial intelligence and semantic web tools applied to information retrieval: a conceptual model with a focus on natural language

Authors

DOI:

https://doi.org/10.5433/1981-8920.2022v27n1p625

Keywords:

Information Retrieval, Semantic Web, Artificial intelligence, Natural Language Processing, Ontology.

Abstract

Objective: the present research has as objective the proposition of a model of Information Retrieval, that redraws this field of studies, from the approximation of the computational language with the natural language, using the principles of the representation of the information so that the meaning and the context of the data are explicit for the search process, for this purpose the Artificial Intelligence, Natural Language Processing and the Semantic Web tools are related and related.
Methodology: using the quadripolar method, namely: epistemological pole, theoretical pole, technical pole and morphological pole. Furthermore, the research was exploratory, having an applied character.
Results: As results, this Information Retrieval model was created, based on the semantic context and the application of Artificial Intelligence, capable of making natural language the basis of the process, and considering the context and the meaning of the terms for users.
Conclusions: it is pointed out that the present work makes an important approximation between Information Science and Artificial Intelligence, bringing to its scope, especially in the scope of Information Retrieval, real applications of how this second field of studies can improve the area as a whole.

Downloads

Download data is not yet available.

Author Biographies

Caio Saraiva Coneglian, Universidade Estadual Paulista - UNESP

PhD in Information Science from the Universidade Estadual Paulista - UNESP

José Eduardo Santarem Segundo, Universidade de São Paulo - USP

PhD in Information Science from the Universidade Estadual Paulista Júlio de Mesquita Filho-UNESP

References

ABDI, A; IDRIS, N; AHMAD, Z. QAPD: an ontology-based question answering system in the physics domain. Soft Computing, v. 22, n. 1, p. 213-230, 2018.

ALMANSA, L. F. Um framework de Question Answering nos domínios de epigenética e de imagens citológicas de tireoide. 2016. Dissertação (Mestrado em Ciências) - Universidade de São Paulo, Ribeirão Preto. 2016.

ASIAEE, A. H. et al. A framework for ontology-based Question Answering with application to parasite immunology. Journal of biomedical semantics, v. 6, n. 1, p. 1, 2015.

BERNARDO, R. O. SANTACHÉ, A. Aplicação de chatbots no desenvolvimento de jogos em saúde. UNICAMP. 2017. Disponível em: http://www.ic.unicamp.br/~reltech/PFG/2017/PFG-17-22.pdf. Acesso em: 27 ago. 2021.

BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. The semantic web. Scientific american, v. 284, n. 5, p. 28-37, 2001.

BOUZIANE, A.; BOUCHIHA, D.; DOUMI, N.; MALKI, M. Toward an arabic question answering system over linked data. Jordanian Journal of Computers and Information Technology, Jordan, v. 4, n. 2, p. 102 - 115, Aug 2018. Doi: 10.5455/jjcit.71-1514749838..

CABALEIRO, B.; PEÑAS, A.; MANANDHAR, S. Grounding proposition stores for question answering over linked data. Knowledge-Based Systems, v. 128, p. 34-42, 2017.

COSTA, E.; CAMPELO, C.; SAMPAIO, L. Classificação automática de questões. Problema de matemática para aplicações do pensamento computacional na educação. In: WORKSHOPS DO CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 2018, Fortaleza. Anais... Fortaleza: SBC, 2018. p. 569.

FERRÁNDEZ, O.; IZQUIERDO, R.; FERRÁNDEZ, S.; VICEDO, J. L. Addressing ontology-based question answering with collections of user queries. Information Processing & Management, v. 45, n. 2, p. 175-188, 2009.

JORDAN, M. I.; MITCHELL, T. M. Machine learning: Trends, perspectives, and prospects. Science, v. 349, n. 6245, p. 255-260, 2015. Disponível em: https://cs.uwaterloo.ca/~y328yu/mycourses/480-2018/readings/JordanMitchell.pdf. Acesso em: 31 mar. 2021.

KUMAR, G. S.; ZAYARAZ, G. Concept relation extraction using Naïve Bayes classifier for ontology-based Question Answering systems. Journal of King Saud University-Computer and Information Sciences, v. 27, n. 1, p. 13-24, 2015. Disponível em: https://bit.ly/3M3YQyD. Acesso em: 17 ago. 2021.

LIDDY, E. D. Natural language processing. In: ENCYCLOPEDIA of Library and Information Science, 2nd ed. Ney York: Marcel Decker, 2001. Disponível em: https://surface.syr.edu/cgi/viewcontent.cgi?referer=http://scholar.google.com.br/&httpsredir=1&article=1019&context=cnlp. Acesso em: 05 abr. 2021.

LOPEZ, V. et al. Evaluating Question Answering over Linked Data. Web Semantics: Science, Services and Agents on the World Wide Web, v. 21, p. 3-13, 2013. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S157082681300022X. Acesso em: 14 mar. 2021.

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach. Malaysia: Pearson Education Limited, 2016.

SANTAREM SEGUNDO, J. E.; CONEGLIAN, C. S. Tecnologias da Web Semântica aplicadas a organização do conhecimento: padrão SKOS para construção e uso de vocabulários controlados descentralizados. In: GUIMARÃES, J. A. C.; DODEBEI, V. (Org.). Organização do Conhecimento e Diversidade Cultural. Marília: Fundepe, 2015. v. 3, p. 224-233. Disponível em: https://bit.ly/3POYNJX. Acesso em: 15 abr. 2021.

VIEIRA, R; LOPES, L. Processamento de linguagem natural e o tratamento computacional de linguagens científicas. In: PERNA, C. L.; DELGADO, H. K.; FINATTO, M.J. (org.). Linguagens especializadas em corpora : modos de dizer e interfaces de pesquisa [recurso eletrônico. Porto Alegre : EDIPUCRS, 2010. p. 183-202, 2010. Disponível: https://bit.ly/3N53AVM. Acesso em: 15 abr. 2021.

WALTER, S. UNGER, C.; CIMIANO, P.; MOTTA, E. Evaluation of a layered approach to Question Answering over Linked Data. In: The Semantic Web–ISWC 2012. Springer Berlin Heidelberg, 2012. p. 362-374. Disponível em: https://link.springer.com/chapter/10.1007/978-3-642-35173-0_25. Acesso em: 14 mar. 2020.

XIE, X.; SONG, W.; LIU, L.; DU, C.; WANG, H. Research and implementation of automatic question answering system based on ontology. In: CHINESE CONTROL AND DECISION CONFERENCE (2015 CCDC), 27., 2015, Qingdao, China. Proceeding [...]. Qingdao, China: IEEE, 2015. p. 1366-1370. doi: 10.1109/CCDC.2015.7162131.

Published

2022-05-22

How to Cite

Coneglian, C. S., & Segundo, J. E. S. (2022). Artificial intelligence and semantic web tools applied to information retrieval: a conceptual model with a focus on natural language. Informação & Informação, 27(1), 625–651. https://doi.org/10.5433/1981-8920.2022v27n1p625

Issue

Section

Artigos