Exploring snakebite epidemiology between 2010 and 2021 in Paraná, Brazil: introducing distribution patterns, clinical profiles, and sociodemographic factors

Authors

DOI:

https://doi.org/10.5433/1679-0367.2024v45n2p197

Keywords:

Snakebites, Envenomation, Neglected tropical diseases, Public health challenges

Abstract

Snakebite envenomation, although prevalent in rural and tropical areas, is often neglected as a public health issue. Paraná records fewer cases compared to other Brazilian regions, yet the epidemiology and factors affecting these incidents are not fully understood. This study aimed to describe the epidemiology of snakebite accidents in Paraná from 2010 to 2021 and identify factors associated with clinical outcomes. Data were sourced from the Notifiable Diseases Information System and Venomous Animals Notification System. Incident trends were analyzed using Joinpoint Regression, and high-incidence regions were identified through spatial autocorrelation and hotspot analysis. Associations between factors and outcomes were assessed using logistic regression, Fisher's exact test, or the Chi-squared test. Of 9,362 cases, 69.19% involved Bothrops spp., while Thamnodynastes spp., Dipsas spp., and Philodryas spp. were the main non-venomous snakes. Venomous snakebite incidence decreased by 7.74% from 2017 to 2021. Death was associated with age >65, illiteracy, delays ≥6 h, and local/systemic complications (p<0.001). Non-venomous snakebite accidents rose by 6% since 2010. A case of acute renal failure was reported in an accident involving Pseudablabes patagoniensis. The study highlights snakebites as a significant public health issue due to their potential for severe complications. The findings enhance understanding of snakebite epidemiology in Paraná, aiding in the development of targeted interventions and prevention strategies.

Downloads

Download data is not yet available.

Author Biographies

Daniel José Scheliga, Pontifícia Universidade Católica do Paraná - PUC-PR

Master's degree in Health Sciences from the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná.

Adriano Akira Ferreira Hino, Pontifícia Universidade Católica do Paraná - PUC-PR

PhD from the Postgraduate Program in Physical Education at the FUniversidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil. Adjunct Professor at the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná

Marcia Olandoski, Pontifícia Universidade Católica do Paraná - PUC-PR

PhD in Health Sciences from the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil. Adjunct Professor at the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná.

Julio Cesar de Moura-Leite, Universidade Católica do Paraná - PUC-PR

PhD in Health Sciences from the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil. Adjunct Professor at the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná.

Emanuel Marques-da-Silva, Secretaria da Saúde do Estado do Paraná

Master's degree in Public Health from the Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil. Biologist at the 1st Regional Health Department - Paranaguá (1st RS), Paranaguá, Paraná.

Selene Elifio Esposito, Pontifícia Universidade Catolica do Paraná - PUC-PR

PhD in Sciences (concentration in Biochemistry) from the Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil. Full Professor at the Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná

References

Brasil. Boletim Epidemiológico 36, 2021 [Web]. Brasília: Secretaria de Vigilância em Saúde; 2022 [updated 09/23/2023. 36:[Boletim Epidemiológico]. Available from: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/edicoes/2022/boletim-epidemiologico-vol-53-no36/view.

Câmara OF, da Silva DD, de Holanda MN, Bernarde PS, da Silva AM, Monteiro WM, et al. Ophidian envenomings in a region of Brazilian western Amazon. J Hum Growth Dev. 2020;30(1):120-8.

Carlos AB-VaJMCaCR-IaMS-VaMS. Estimating snakebite incidence from mathematical models: A test in Costa Rica. PLoS neglected tropical diseases. 2019;13:e0007914 , pmid = 31790407.

Ceron K, Vieira C, Carvalho PS, Carrillo JFC, Alonso J, Santana DJ. Epidemiology of snake envenomation from Mato Grosso do Sul, Brazil. PLoS Negl Trop Dis. 2021;15(9):e0009737.

Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis. 2017;23:38.

Duarte L, S., Bergamin RS, Marcilio-Silva V, Seger GD, Marques MC. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex. PLoS One. 2014;9(8):e105043.

ESRI. ArcGis 10.2. In: Institute ESR, editor. 10.2 ed. Redlands: Environmental Systems Research Institute; 2013. p. Cloud-based mapping and analysis.

ESRI. How Hot Spot Analysis works 2022 [Available from: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm.

Feitosa EL, Sampaio VS, Salinas JL, Queiroz AM, da Silva IM, Gomes AA, et al. Older Age and Time to Medical Assistance Are Associated with Severity and Mortality of Snakebites in the Brazilian Amazon: A Case-Control Study. PLoS One. 2015;10(7):e0132237.

Ferreira AA, Reis VPD, Boeno CN, Evangelista JR, Santana HM, Serrath SN, et al. Increase in the risk of snakebites incidence due to changes in humidity levels: A time series study in four municipalities of the state of Rondônia. Revista da Sociedade Brasileira de Medicina Tropical. 2020;53:1-7.

Guedes JJM, de Assis CL, da Silva DH, Feio RN. New records and notes on defensive behavior of Thamnodynastes rutilus (Prado 1942). Neotrop Biol Conserv. 2017;12(2):154-8.

Gutierrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers. 2017;3:17079.

Gutierrez JM. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories. Toxins (Basel). 2018;11(1).

IBM. Statistical Package for the Social Sciences software (SPSS version 28). In: IBM, editor. Statical software plataform2022.

IPARDES. Estimativas do Paraná, PNAD Covid-19, novembro de 2020 2021 [Available from: https://www.ipardes.pr.gov.br/Pagina/PNAD-COVID-19-Estado-do-Parana.

Johnston CI, Ryan NM, Page CB, Buckley NA, Brown SG, O'Leary MA, et al. The Australian Snakebite Project, 2005-2015 (ASP-20). Med J Aust. 2017;207(3):119-25.

Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19(3):335-51.

Mahendra M, Mohammed M, Mohan CN, Ramaiah M. Study of Delayed Treatment Perspective of Snake Bites and their Long‑Term Effects in a Tertiary Care Hospital in Balgalkot District of Karnataka. J Intern Med. 2021;9(3):153-8.

Melo-Sampaio PR, Passos P, Martins AR, Jennings WB, Moura-Leite JC, Morato SAA, et al. A phantom on the trees: Integrative taxonomy supports a reappraisal of rear-fanged snakes classification (Dipsadidae: Philodryadini). Zool Anz. 2021;290:19-39.

Miranda SC, Bustamante M, Palace M, Hagen S, Keller M, Ferreira LG. Regional variations in biomass distribution in Brazilian Savanna Woodland. Biotropica. 2014;46(2):125-38.

Dotmatics. Prism - Graph Pad Boston, Massachusetts2023 [Available from: https://www.graphpad.com/.

Mise YF, Lira-da-Silva RM, Carvalho FM. Time to treatment and severity of snake envenoming in Brazil. Rev Panam Salud Publica. 2018;42:e52.

Navarro JG, Uchida DT, Machinski Jr M. Accidents by Venomous Animals in the State of Parana,Brazil. Rev S Publ Paraná. 2022;5(4):1-15.

NCI. Joinpoint Trend Analysis Software. In: Institute NC, editor. Statical Methodology and Applications Branch. 4.9.1.0 ed. Bethesda: National Cancer Institute; 2022. p. Surveillance Research Program.

Ribeiro LA, Gadia R, Jorge MT. Comparison between the epidemiology of accidents and the clinical features of envenoming by snakes of the genus Bothrops, among elderly and non-elderly adults. Rev Soc Bras Med Trop. 2008;41(1):46-9.

Schneider MC, Min KD, Hamrick PN, Montebello LR, Ranieri TM, Mardini L, et al. Overview of snakebite in Brazil: Possible drivers and a tool for risk mapping. PLoS Negl Trop Dis. 2021;15(1):e0009044.

Schneider MC, Vuckovic M, Montebello L, Sarpy C, Huang Q, Galan DI, et al. Snakebites in Rural Areas of Brazil by Race: Indigenous the Most Exposed Group. Int J Environ Res Public Health. 2021;18(17).

Silva TB, Aly J, Figueira M, Araújo CMdG, Sousa IKFd, Tonin AA, et al. Epidemiological aspects of snakebite in the state of Amazon, Brazil, from 2007 to 2017. J Trop Pathol. 2021;50(4):315-26.

Silveira PVP, Nishioka SdA. Non-venomous snake bite and snake bite without envenoming in a Brazilian teaching hospital. Analysis of 91 cases. Rev Inst Med Trop Sao Paulo. 1992;34(6):499-503.

Trevine VC, Grazziotin FG, Giraudo A, Sallaberryâ€Pincheira N, Vianna JA, Zaher H. The systematics of Tachymenini (Serpentes, Dipsadidae): An updated classification based on molecular and morphological evidence. Zool Scr. 2022;51(6):643-63.

Weinstein SA, Warrell DA, White J, Keyler DE. Venomous Bites from non-venomous snakes - A critical analysis of risk and management of "colubrid" snake bite. 1 ed. Amsterdam: Elsevier; 2011. 364 p.

Yukari Figueroa Mise and Rejâne Maria Lira-da-Silva and Fernando Martins C. Agriculture and snakebite in Bahia, Brazil - An ecological study. Annals of Agricultural and Environmental Medicine. 2016;23:416-9 , pmid = 27660860 , publisher = Institute of Agricultural Medicine.

Downloads

Published

2025-01-02

How to Cite

1.
Scheliga DJ, Hino AAF, Olandoski M, Moura-Leite JC de, Marques-da-Silva E, Elifio Esposito S. Exploring snakebite epidemiology between 2010 and 2021 in Paraná, Brazil: introducing distribution patterns, clinical profiles, and sociodemographic factors. Semin. Cienc. Biol. Saude [Internet]. 2025 Jan. 2 [cited 2025 Dec. 20];45(2):197-210. Available from: https://ojs.uel.br/revistas/uel/index.php/seminabio/article/view/51410

Issue

Section

Artigos