The influence of synthesis temperature on the HT-LiCoO2 crystallographic properties

The influence of synthesis temperature on the HT-LiCoO2 crystallographic properties

Authors

  • Diego Viscovini de Carvalho Sallas Universidade Estadual de Londrina
  • Bianca Akemi Kawata Universidade Estadual de Londrina
  • Olívio Fernandes Galão Universidade Estadual de Londrina
  • Luciana Gomes Chagas Johnson Matthey, Blount’s Court, Sonning Common, Reading, RG4 9NH, United Kingdom http://orcid.org/0000-0001-8416-3226
  • Paulo Rogério Catarini da Silva Universidade Estadual de Londrina -UEL
  • Maria Gabriella Detone Guaita Universidade Estadual de Londrina -UEL
  • Alexandre Urbano Universidade Estadual de Londrina -UEL http://orcid.org/0000-0002-5057-1982

DOI:

https://doi.org/10.5433/1679-0375.2019v40n2p115

Keywords:

Lithium batteries, Sol-gel synthesis, LiCoO2, Crystallography, Crystallite size, Micro-strain.

Abstract

Much of the success of cobalt-based lithium-ion batteries is due to the easy synthesis of HT-LiCoO2 achieved with sol-gel routes. Many sol-gel routes reduced the synthesis temperature from 900 °C - for solid state routes - to 600 °C. However, to obtain the HT-LCO compound by a chemical route at moderate calcinations temperatures, the heating rate at the early stage of the synthesis should be high. However, at high heating rates, a high concentration of energy develops due to the combustion of chelating agents, causing an undesirable great volumetric expansion. Therefore, as a way of minimizing the volumetric expansion effects the heating rate in the synthesis was investigated. X-ray diffraction results showed that using a low heating rate the HT-LCO phase formation requires more than the energy available at 600 °C to be pure and to crystallize in the desired space group. However, for the calcination temperature of 800 °C, only 20 min was sufficient to synthesize a high ordered crystallographic HT-LCO phase. The reduced synthesis time is possibly associated with a high homogenization of the metallic ions since the gel expansion is radically reduced. The LCO synthesized at 800 C for only 20 min showed electrochemical charge capacity of about 140 mAh g-1. It was concluded that by controlling the kinetics during the heating step, in the early stage of the synthesis, the HT-LCO is obtained with high ordered crystallography, although the synthesis time is reduced, therefore enabling a more economically attractive synthesis process.

Downloads

Download data is not yet available.

Author Biographies

Diego Viscovini de Carvalho Sallas, Universidade Estadual de Londrina

Department of Chemistry, State University of Londrina, Brazil

Bianca Akemi Kawata, Universidade Estadual de Londrina

Department of Physics, State University of Londrina, Brazil

Olívio Fernandes Galão, Universidade Estadual de Londrina

Department of Chemistry, State University of Londrina, Brazil

Luciana Gomes Chagas, Johnson Matthey, Blount’s Court, Sonning Common, Reading, RG4 9NH, United Kingdom

PhD Student in Chemistry at Münster Electrochemical Energy Technology (MEET) at Westfälische Wilhelms-Universität Münster, Germany

Paulo Rogério Catarini da Silva, Universidade Estadual de Londrina -UEL

Department of Physics, State University of Londrina, Brazil

Maria Gabriella Detone Guaita, Universidade Estadual de Londrina -UEL

Department of Chemistry, State University of Londrina, Brazi

Alexandre Urbano, Universidade Estadual de Londrina -UEL

Department of Physics, State University of Londrina, Brazil

References

ANTOLINI, E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties. Solid State Ionics, Amsterdam, v. 170, n. 3/4, p. 159–171, 2004.

BAZITO, F. F. C.; TORRESI, R. M. Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, São Paulo, v. 17, n. 4, p. 627–642, 2006.

BELOV, D.; YANG, M. H. Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics, Amsterdam, v. 179, n. 27/32, p. 1816–1821, 2008. Doi: https://doi.org/10.1016/j.ssi.2008.04.031

CHEN, H.; QIU, X.; ZHU,W.; HAGENMULLER, P. Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery. Electrochemistry Communications, New York, v. 4, n. 6, p. 488–491, 2002.

DAI, X. et al. Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. Journal of Physical Chemistry C, Washington, v. 120, n. 1,p. 422–430, 2016.

DING, N.; GE, X. W.; CHEN, C. H. A new gel route to synthesize LiCoO2 for lithium-ion batteries. Materials Research Bulletin, New York, v. 40, n. 9, p. 1451–1459, 2005.

DONG, Q.; KUMADA, N.; YONESAKI,Y.; TAKEI, T.; KINOMURA, N. Synthesis of LiCoO2 via a facile hydrothermal-assisted route. Journal of the Ceramic Society of Japan, [Tóquio], v. 119, n. 1390, p. 538–540, 2011.

GARCIA, B; FARCY, J.; PEREIRA-RAMOS, J.P.; BAFFIER, N., Electrochemical Properties of Low Temperature Crystallized LiCoO2, Journal of The Electrochemical Society, v. 144, issue 4, 1179-1184, 1997.

GUMMOW, R. J.; THACKERAY, M. M.; DAVID, W. I. F.; HULL, S. Structure and Electrochemistry of Lithium Cobalt Oxide. Materials Research Bulletin, New York, v. 27, p. 327–337, 1992.

HU, C. Y.; GUO, J.; DU, Y.; XU, H.-h.; HE, Y.-h. Effects of synthesis conditions on layered Li[Ni1=3Co1=3Mn1=3]O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, [S. l.], v. 21, n. 1, p. 114–120, 2011.

JULIEN, C. 4-Volt Cathode Materials for Rechargeable Lithium Batteries Wet-Chemistry Synthesis, Structure and Electrochemistry. Ionics, Amsterdam, v. 6, n. 1/2, p. 30–46, 2000.

KANG, S. G.; KANG, S.Y.; RYU, K. S.; CHANG, S. H. Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics, Amsterdam, v. 120, n. 1, p. 155–161, 1999.

KHOMANE, R. B.; AGRAWAL, A. C.; KULKARNI, B. D.; GOPUKUMAR, S.; SIVASHANMUGAM, A. Preparation and electrochemical characterization of lithium cobalt oxide nanoparticles by modified sol-gel method. Materials Research Bulletin, New York, v. 43, n. 8/9, p. 2497–2503, 2008. Doi: https://doi.org/10.1016/j.materresbull.2007.08.033

KIM, D. S.; LEE, C. K.; KIM, H. Preparation of nanosized LiCoO2 powder by the combination of sonication and modified Pechini process. Solid State Sciences, Paris, v. 12, n. 1, p. 45–49, 2010. Doi: https://doi.org/10.1016/j.solidstatesciences.2009.09.022

KIM, J.-W.; LEE, Y.-D.; LEE, H.-G. Decomposition of Li2CO3 by Interaction with SiO2 in mold flux of steel continuous casting. ISIJ International, Tokyo, v. 44, n. 2, p. 334–341, 2008.

LI, M.; LU, J.; CHEN, Z.; AMINE, K. 30 years of lithium-ion batteries. Advanced Materials, Weinheim, v. 30, n. 33, p. 1–24, 2018. Doi: https://doi.org/10.1002/ adma.201800561

LIU, A.; LIB, J.; SHUNMUGASUNDARAMA, R.; DAHNA, J. R. Synthesis of Mg and Mn doped LiCoO2
and effects on high voltage cycling. Journal of The Electrochemical Society, Pennington, v. 164, n. 7,
p. A1655–A1664, 2017.

MENG, X. et al. Recycling of LiNi1=3Co1=3Mn1=3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Management, Elmsford, v. 84, p. 54–63, 2019. Doi: https://doi.org/10.1016/j.wasman.2018.11.034

MIZUSHIMA, K.; JONES, P.C.; WISEMANJ, P. J.; GOODENOUGH, J. B. LixCoO2 (0 < x _ 1): a new cathode material for batteries of high energy density. Solid State Ionics, Amsterdam, v. 3/4, p. 171–174, 1981. Doi: https://doi.org/10.1016/0025-5408(80)90012-4

OH, I. H.; HONG, S. A.; SUN, Y. K. Low-temperature preparation of ultrafine LiCoO2 powders by the sol-gel method. Journal of Materials Science, London, v. 32, n. 12, p. 3177–3182, 1997.

OHZUKU, T.; UEDA, A.; NAGAYAMA, M.; IWAHOSHI, Y. H. K. Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta, New York, v. 38, n. 9, p. 1159–1167, 1993. Doi: https://doi.org/10.1016/0013-4686(93)80046-3

PORTHAULT, H.; BADDOUR-HADJEAN, R.; LE CRAS, F.; BOURBON, C.; FRANGER, S. Raman study of the spinel-to-layered phase transformation in sol-gel LiCoO2 cathode powders as a function of the postannealing temperature. Vibrational Spectroscopy, Amsterdam, v. 62, p. 152–158, 2012. Doi: https://doi.org/10. 1016/j.vibspec.2012.05.004

PORTHAULT, H.; LE CRAS, F.; FRANGER, S. Synthesis of LiCoO2 thin films by sol/gel process. Journal of Power Sources, Lausanne, v. 195, n. 19, p. 6262–6267, 2010. Doi: https://doi.org/10.1016/j.jpowsour.2010.04.058

PREDOANAˇ , L. et al. Electrochemical properties of the LiCoO2 powder obtained by sol-gel method. Journal of the European Ceramic Society, Oxford, v. 27, n. 2/3, p. 1137–1142, 2007.

SANTOS, C. S. et al. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries. Journal of Hazardous Materials, Amsterdam, v. 362, p. 458–466, 2019. Doi: <https: //doi.org/10.1016/j.jhazmat.2018.09.039>

SUN, Y. K. Cycling behaviour of LiCoO2 cathode materials prepared by PAA-assisted sol-gel method for rechargeable lithium batteries. Journal of Power Sources, Lausanne, v. 83, n. 1/2, p. 223–226, 1999. Doi: <https: //doi.org/10.1016/S0378-7753(99)00280-3>

SUN, Y. K.; OH, I. H.; HONG, S. A. Synthesis of ultrafine LiCoO2 powders by the sol-gel method. Journal of Materials Science, London, v. 31, n. 14, p. 3617–3621, 1996.

YOON, W. S.; LEE, K. K.; KIM, K. B. Synthesis of LiAlyCo1

Downloads

Published

2019-12-18

How to Cite

Sallas, D. V. de C., Kawata, B. A., Galão, O. F., Chagas, L. G., Silva, P. R. C. da, Guaita, M. G. D., & Urbano, A. (2019). The influence of synthesis temperature on the HT-LiCoO2 crystallographic properties. Semina: Ciências Exatas E Tecnológicas, 40(2), 115–122. https://doi.org/10.5433/1679-0375.2019v40n2p115

Issue

Section

Original Article
Loading...