Physiological and biochemical responses of soybean to drought as represented by the fraction of transpirable soil water

Autores/as

DOI:

https://doi.org/10.5433/1679-0359.2022v43n6p2449

Palabras clave:

Antioxidant enzymes, FTSW threshold, Glycine max L, Growth, Transpiration.

Resumen

The influence of water deficit on plant physiological and biochemical responses as measured by the fraction of transpirable soil water (FTSW) has not been investigated in cultivars developed by the world's largest soybean producer. This information can help obtain plants with improved tolerance to the abiotic stress that most affects soybean production in Brazil, enabling adaptation to edaphoclimatic conditions to enhance the crop's yield potential. We aim to determine the FTSW threshold for transpiration and evaluate changes in the growth, physiological activities, and biochemical and antioxidant responses of soybean cultivars. Three trials were sown on 11/19/2018 (T1), 12/28/2018 (T2), and 9/9/2019 (T3), representing almost the entire soybean sowing window in Brazil. The estimated FTSW threshold values were 0.33, 0.29, and 0.31 in T1; 0.35, 0.41, and 0.43 in T2; and 0.31, 0.49, and 0.45 in T3 for cultivars BMX GARRA IPRO, DM 66I68 RSF IPRO, and NA 5909 RG, respectively. In the three trials, NA 5909 RG showed the greatest height. The POD enzyme was activated in non-irrigated plants in T2 only in cvs. DM 66I68 RSF IPRO and NA 5909 RG. We conclude that cvs. DM 66I68 RSF IPRO and NA 5909 RG showed a more efficient stomatal control, conserving soil water for a longer time, which indicates greater tolerance to water deficit.

Biografía del autor/a

Jéssica Taynara da Silva Martins, Universidade Estadual do Norte Fluminense

Doctoral Student of the Postgraduate Program in Plant Production, Universidade Estadual do Norte Fluminense, UENF, Campos dos Goytacazes, RJ, Brazil.

Valeria Pohlmann, Universidade Federal de Pelotas

Doctoral Student of the Postgraduate Program in Family Agricultural Production System, Universidade Federal de Pelotas, UFPEL, Pelotas, RS, Brazil.

Isabel Lago, Universidade Federal de Santa Maria

Profa Dra, Department of Crop Science, Universidade Federal de Santa Maria, UFSM, Santa Maria, RS, Brazil.

Alencar Junior Zanon, Universidade Federal de Santa Maria

Prof. Dr., Department of Crop Science, Universidade Federal de Santa Maria, UFSM, Santa Maria, RS, Brazil.

Luciane Almeri Tabaldi, Universidade Federal de Santa Maria

Profa Dra, Department of Biology, UFSM, Santa Maria, RS, Brazil.

Liliane Correa Machado, Universidade Estadual do Norte Fluminense

Doctoral Student of the Postgraduate Program in Plant Production, Universidade Estadual do Norte Fluminense, UENF, Campos dos Goytacazes, RJ, Brazil.

Thays Correa Costa, Universidade Estadual do Norte Fluminense

Doctoral Student of the Postgraduate Program in Plant Production, Universidade Estadual do Norte Fluminense, UENF, Campos dos Goytacazes, RJ, Brazil.

Patricia Carine Hüller Goergen, Universidade Federal de Santa Maria

Dra in Agronomy, Universidade Federal de Santa Maria, UFSM, Santa Maria, RS, Brazil.

Eduardo Lago Tagliapietra, Universidade Federal de Santa Maria

Doctoral Student of the Postgraduate Program in Agronomy, UFSM, Santa Maria, RS, Brazil.

Gerâne Silva Wertonge de Oliveira, Universidade Federal de Santa Maria (UFSM)

Doctoral Student of the Postgraduate Program in Forest Engineering, UFSM, Santa Maria, RS, Brazil.

Citas

Bagherzadi, L., Sinclair, T. R., Zwieniecki, M., Secchi, F., Hoffmann, W., Carter, T. E., & Rufty, T. W. (2017). Assessing water-related plant traits to explain slow-wilting in soybean PI 471938. Journal of Crop Improvement, 31(3), 400-417. doi: 10.1080/15427528.2017.1309609 DOI: https://doi.org/10.1080/15427528.2017.1309609

Buriol, G. A., Adeli, G., Streck, N. A., Petry, C., & Schneider, F. M. (1995). Transmissividade a radiação solar do polietileno de baixa densidade utilizado em estufas. Ciência Rural, 25(1), 1-4. doi: 10.1590/S0103-84781995000100001 DOI: https://doi.org/10.1590/S0103-84781995000100001

Castro, J. N., Müller, C., Almeida, G. M., & Costa, A. C. (2019). Physiological tolerance to drought under high temperature in soybean cultivars. Australian Journal of Crop Science, 13(6), 976-987. doi: 10.21 475/ajcs.19.13.06.p1767 DOI: https://doi.org/10.21475/ajcs.19.13.06.p1767

Cao, L., Jin, X. J., & Zhang, Y. X. (2019). Melatonin confers drought stress tolerance in soybean (Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism. Photosynthetica, 57(3), 812-819. doi: 10.32615/ps.2019.100 DOI: https://doi.org/10.32615/ps.2019.100

Comissão de Química e de Fertilidade do Solo RS/SC (2016). Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. SBCS/NRS.

Companhia Nacional de Abastecimento (2022). Acompanhamento da safra brasileira de grãos (Safra 2020/21). https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=20

Darmanti, S., Santosa., Dewi, K., & Nugroho, L. H. (2016). Antioxidative defenses of soybean [Glycine max (L.) Merr. cv. Grobogan] against purple nutsedge (Cyperus rotundus L.) interference during drought stress. The Journal of Animal & Plant Sciences, 26(1), 225-232.

Devi, J. M., & Sinclair, T. R. (2013). Nitrogen fixation drought tolerance of the slow-wilting soybean PI 471938. Crop Science, 53(5), 2072-2078. doi: 10.2135/cropsci2013.02.0095 DOI: https://doi.org/10.2135/cropsci2013.02.0095

Devi, J. M., Sinclair, T. R., Chen, P., & Carter, T. E. (2014). Evaluation of elite southern maturity soybean breeding lines for drought-tolerant traits. Agronomy Journal, 106(6), 1947-1954. doi: 10.2134/agronj14. 0242 DOI: https://doi.org/10.2134/agronj14.0242

Deng, B., Du, W., Liu, C., Sun, W., Tian, S., & Dong, H. (2012). Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids. Plant Growth Regulation, 66(1), 37-47. doi: 10.1007/s10725-011-9626-6 DOI: https://doi.org/10.1007/s10725-011-9626-6

El-Mageed, T. A. A., El-Sherif, A. M. A., Ali, M. M., & El-Wahed, M. H. A. (2017). Combined effect of deficit irrigation and potassium fertilizer on physiological response, plant water status and yield of soybean in calcareous soil. Archives of Agronomy and Soil Science, 63(6), 827-840. doi: 10.1080/0365 0340.2016.1240363 DOI: https://doi.org/10.1080/03650340.2016.1240363

El-Moshaty, F. I. B., Pike, S. M., Novacky, A. J., & Sehgal, O. P. (1993). Lipid peroxidation and superoxide productions in cowpea (Vigna unguicultata) leaves infected with tobacco rings virus or southern bean mosaic vírus. Physiological and Molecular Plant Pathology, 43(2), 109-119. doi: 10.1006/pmpp.1993. 1044 DOI: https://doi.org/10.1006/pmpp.1993.1044

Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. (Special Report, 80). State University of Science and Technology.

Fletcher, A. L., Sinclair, T. R., & Allen, L. H. J. (2007). Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environmental and Experimental Botany, 61(2), 145-151. doi: 10.1016/j.envexpbot.2007.05.004 DOI: https://doi.org/10.1016/j.envexpbot.2007.05.004

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxidedismutase I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314. doi: 10.1104/pp.59.2.309 DOI: https://doi.org/10.1104/pp.59.2.309

Hamid, M., & Rehman, K. (2009). Potential applications of peroxidases. Food Chemistry, 115(4), 1177-1186. doi: 10.1016/j.foodchem.2009.02.035 DOI: https://doi.org/10.1016/j.foodchem.2009.02.035

Hamim, H., Violita, V., Triadiati, T., & Miftahudin, M. (2017). Research article oxidative stress and photosynthesis reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought and paraquat. Asian Journal of Plant Sciences, 16(2), 65-77. doi: 10.3923/ajps.2017.65.77 DOI: https://doi.org/10.3923/ajps.2017.65.77

Kelling, C. R. S., Reichardt, K., Streck, N. A., Lago, I., Zanon, A. J., Rodrigues, M. A. (2015). Transpiração e crescimento foliar de crisântemo em função da fração de água transpirável no substrato. Pesquisa Agropecuário Brasileira, 50(9), 735-744. doi: 10.1590/S0100-204X2015000900001 DOI: https://doi.org/10.1590/S0100-204X2015000900001

King, C. A., Pucell, L. C., & Brye, K. R. (2009). Differential wilting among soybean genotypes in response to water deficit. Crop Science, 49(1), 290-298. doi: 10.2135/cropsci2008.04.0219 DOI: https://doi.org/10.2135/cropsci2008.04.0219

Kuinchtner, A., & Buriol, G. A. (2001). Clima do estado do rio grande do sul segundo a classificação climática de Köppen e Thornthwaite. Disciplinarum Scientia, 2(1), 171-182. doi: 10.37779/nt.v2i1.1136

Lago, I., Streck, N. A., Bisognin, D. A., Souza, A. T., & Silva, M. R. (2011). Transpiração e crescimento foliar de plantas de mandioca em resposta ao déficit hídrico no solo. Pesquisa Agropecuária Brasileira, 46(11), 1415-1423. doi: 10.1590/S0100-204X2011001100001 DOI: https://doi.org/10.1590/S0100-204X2011001100001

Lago, I., Streck, N. A., Zanon, A. J., Hanauer, J. G., Bisognin, D. A., & Silva, M. R. (2012). Transpiração e crescimento foliar de clones de batata em resposta à fração de água transpirável no Solo. Revista Brasileira de Ciências do Solo, 36(3), 745-754. doi: 10.1590/S0100-06832012000300006 DOI: https://doi.org/10.1590/S0100-06832012000300006

Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K.-J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94. doi: 10.3390/antiox8040094 DOI: https://doi.org/10.3390/antiox8040094

Lecoeur, J., & Sinclair, T. R. (1996). Field pea transpiration and leaf growth in response to soil water deficits. Crop Science, 36(2), 331-335. doi: 10.2135/cropsci1996.0011183X003600020020x DOI: https://doi.org/10.2135/cropsci1996.0011183X003600020020x

Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4), 1781-1787. doi: 10.1104/pp.010497 DOI: https://doi.org/10.1104/pp.010497

Noori, M., Azar, A. M., Saidi, M., Panahandeh, J., & Haghi, D. Z. (2018). Evaluation of water deficiency impacts on antioxidant enzymes activity and lipid peroxidation in some tomato (Solanum lycopersicum L.) lines. Indian Journal of Agricultural Research, 52(3), 228-235. doi: 10.18805/IJARe.A-318 DOI: https://doi.org/10.18805/IJARe.A-318

Quan, W., Hu, Y., Mu, Z., Shi, H., & Chan, Z. (2018). Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 129, 150-157. doi: 10.1016/j.plaphy.2018.05.033 DOI: https://doi.org/10.1016/j.plaphy.2018.05.033

Riar, M. K., Cerenizi, P., Manandhar, A., Sinclair, T. R., Li, T., & Carter, T. E. (2018). Expression of drought-tolerant N2 fixation in heterogeneous inbred families derived from PI471938 and hutcheson soybean. Crop Science, 58(1), 364-369. doi: 10.2135/cropsci2017.02.0089 DOI: https://doi.org/10.2135/cropsci2017.02.0089

Ribas, G. G., Zanon, A. J., Streck, N. A., Pilecco, I. B., Souza, P. M., Heinemann, A. B., & Grassini, P. (2021a). Assessing yield and economic impact of introducing soybean to the lowland rice system in southern Brazil. Agricultural Systems, 188, 103036. doi: 10.1016/j.agsy.2020.103036 DOI: https://doi.org/10.1016/j.agsy.2020.103036

Ribas, G. G., Streck, N. A., Ulguim, A. R., Carlos, F. S., Alberto, C. M., Souza, P. M., Barcellos, T., Puntel, S., & Zanon, A. J. (2021b). Assessing factors related to yield gaps in flooded rice in southern Brazil. Agronomy Journal, 113(4), 3341-3350. doi: 10.1002/agj2.20754 DOI: https://doi.org/10.1002/agj2.20754

Richter, G. L., Zanon, A. J., Streck, N. A., Guedes, G. V. C., Kräulich, B., Rocha, T. S. M., Winck, J. E. M., & Cera, J. C. (2014). Estimativa da área de folhas de cultivares antigas e modernas de soja por método não destrutivo. Bragantia, 73(4), 416-425. doi: 10.1590/1678-4499.0179 DOI: https://doi.org/10.1590/1678-4499.0179

Rocha, T. S. M., Streck, N. A., Zanon, A. J., Petry, M. T., Tagliapietra, E. L., Balest, D., Bexaira, K. P., & Marcolin, E. (2017). Performance of soybean in hydromorphic and non hydromorphic soil under irrigated or rainfed conditions. Pesquisa Agropecuária Brasileira, 52(5), 293-302. doi: 10.1590/s0100-204x2017 000500002 DOI: https://doi.org/10.1590/s0100-204x2017000500002

Sadok, W., & Sinclair, T. R. (2009). Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.] Merr.) genotypes selected from a recombinant inbred line population. Field Crops Research, 113(2), 156-160. doi: 10.1016/j.fcr.2009.05.002 DOI: https://doi.org/10.1016/j.fcr.2009.05.002

Sadok, W., Gilbert, M. E., Raza, M. A. S., & Sinclair, T. R. (2012). Basis of slow wilting phenotype in soybean PI 471938. Crop Science, 52(3), 1261-1269. doi: 10.2135/cropsci2011.11.0622 DOI: https://doi.org/10.2135/cropsci2011.11.0622

Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., Hampf, A. C., & Nendel, C. (2015). The soybean yield gap in Brazil: magnitude, causes and possible solutions for sustainable production. The Journal of Agricultural Science, 153(8), 1394-1411. doi: 10.1017/S0021859615000313 DOI: https://doi.org/10.1017/S0021859615000313

Sinclair, T. R., & Ludlow, M. M. (1986). Influence of soil water supply on the plant water balance of four tropical grain legumes. Australian Journal of Plant Physiology, 13(3), 329-341. doi: 10.1071/PP9860329 DOI: https://doi.org/10.1071/PP9860329

Sinclair, T. R., Messina, C. D., Beatty, A., Mitch, A., & Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal, 102(2), 475-482. doi: 10.2134/ agronj2009.0195 DOI: https://doi.org/10.2134/agronj2009.0195

Sinclair, T. R., Manandhar, A., Belko, N., Riar, M., Vadez, V., & Roberts, P. A. (2015). Variation among cowpea genotypes in sensitivity of transpiration rate and symbiotic nitrogen fixation to soil drying. Crop Science, 55(5), 2270-2275. doi: 10.2135/cropsci2014.12.0816 DOI: https://doi.org/10.2135/cropsci2014.12.0816

Souza, A. T., Streck, N. A., Heldwein, A. B., Bisognin, D. A., Winck, J. E. M., Rocha, T. S. M., & Zanon, A. J. (2014). Transpiration and leaf growth of potato clones in response to soil water deficit. Scientia Agricola, 71(2), 96-104. doi: 10.1590/S0103-90162014000200002 DOI: https://doi.org/10.1590/S0103-90162014000200002

Streck, E. V., Kämpf, N., Dalmolin, R. S. D., Klamt, E., Nascimento, P. C., Giasson, E., & Pinto, L. F. S. (2018). Solos do Rio Grande do Sul. Emater/RS-Ascar.

Tagliapietra, E. L., Streck, N. A., Rocha, T. S. M., Richter, G. L., Silva, M. R., Cera, J. C., Guedes, J. V. C., & Zanon, A. J. (2018). Optimum leaf area index to reach soybean yield potential in subtropical environment. Agronomy Journal, 110(3), 932-938. doi: 10.2134/agronj2017.09.0523 DOI: https://doi.org/10.2134/agronj2017.09.0523

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed.

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul.

Theisen, G., Silva, J. J. C., Silva, J. S., Andres, A., Anten, N. P. R., & Bastiaans, L. (2017). The birth of a new cropping system: towards sustainability in the sub-tropical lowland agriculture. Field Crops Research, 212, 82-94. doi: 10.1016 / j.fcr.2017.07.001 DOI: https://doi.org/10.1016/j.fcr.2017.07.001

Wang, A., Lam, S. K., Hao, X., Li, F. Y, Zong, Y., Wang, H., & Li, P. (2018). Elevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiency. Plant Physiology and Biochemistry, 132, 660-665. doi: 10.1016/j.plaphy. 2018.10.016 DOI: https://doi.org/10.1016/j.plaphy.2018.10.016

Zanon, A. J., Streck, N. A., & Grassini, P. (2016). Climate and management factors influence soybean yield potential in a subtropical environment. Agronomy Journal, 108(4), 1447-1454. doi: 10.2134/agronj2015. 0535 DOI: https://doi.org/10.2134/agronj2015.0535

Zeraik, A. E., Souza, F. S., Fatibello, O., Fº., & Leite, O. D. (2008). Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Química Nova, 31(4), 731-734. doi: 10.1590/S0100-40422008000400003 DOI: https://doi.org/10.1590/S0100-40422008000400003

Zou, J. N., Jin, X. J., Zhang, Y. X., Ren, C. Y., Zhang, M. C., & Wang, M. X. (2019). Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 57(2), 512-520. doi: 10.32615/ps.2019.066 DOI: https://doi.org/10.32615/ps.2019.066

Descargas

Publicado

2022-12-08

Cómo citar

Martins, J. T. da S., Pohlmann, V., Lago, I., Zanon, A. J., Tabaldi, L. A., Machado, L. C., … Oliveira, G. S. W. de. (2022). Physiological and biochemical responses of soybean to drought as represented by the fraction of transpirable soil water. Semina: Ciências Agrárias, 43(6), 2449–2470. https://doi.org/10.5433/1679-0359.2022v43n6p2449

Número

Sección

Artigos

Artículos más leídos del mismo autor/a