Tolerância de cultivares e seleções clonais de porta-enxertos de pessegueiro ao excesso de alumínio

Autores

DOI:

https://doi.org/10.5433/1679-0359.2023v44n3p1127

Palavras-chave:

Alumínio em tecidos, Morfologia radicular, Prunus, Resistência do alumínio, Toxicidade de alumínio.

Resumo

Formas de alumínio (Al) presentes na solução de solos tropicais e subtropicais podem causar toxicidade em porta-enxertos e cultivares de pessegueiro, prejudicando o crescimento e a produtividade. Isso pode ser minimizado pelo cultivo de porta-enxertos e cultivares tolerantes ao Al. Porém, isso não é suficientemente conhecido, principalmente porque os programas de melhoramento vegetal nem sempre consideram a tolerância como uma variável de seleção de materiais genéticos. O estudo teve como objetivo (a) selecionar cultivares e seleções clonais de porta-enxertos de pessegueiro tolerantes ao Al, (b) identificar variáveis que confiram tolerância ao Al para uso em programas de melhoramento genético e (c) propor níveis críticos (NC) e faixas de toxicidade (FT) do Al em relação às variáveis morfológicas do sistema radicular. O delineamento experimental foi inteiramente casualizado, compreendendo fatorial 13 (cultivares e seleções clonais) x 2 (com e sem Al) com três repetições. Mudas de pessegueiro 'BRS Mandinho' autoenraizadas (sem porta-enxerto) e mudas enxertadas de 'BRS Mandinho' em diferentes cultivares e seleções de porta-enxertos clonais foram cultivadas em sistema hidropônico, compondo dois níveis para o fator Al (ausência e presença a 100 mg L−1). Foram avaliadas as variáveis morfológicas da parte aérea e do sistema radicular, acúmulo de Al nos tecidos, fator de translocação, NC e FT do Al nas raízes. Os porta-enxertos FB-SM-09-43, JB-ESM-09-13, SAS-SAU-09-71, SS-CHI-09-40, 'Sharpe' e VEH-GRA-09-55 foram tolerantes a altas concentrações de Al. O NC do Al nas raízes em relação à área radicular dos porta-enxertos de pessegueiro foi de 1400 mg Al kg−1, e o FT ficou entre 1200 e 1500 mg Al kg−1.

Métricas

Carregando Métricas ...

Biografia do Autor

Marcos Vinícius Miranda Aguilar, Universidade Federal de Santa Maria

Doutorando do Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal de Santa Maria, UFSM, Santa Maria, RS, Brasil.

Jean Michel Moura-Bueno, Universidade Federal de Santa Maria

Prof. Dr., Universidade de Cruz Alta, UNICRUZ, Cruz Alta, RS, Brasil.

Newton Alex Mayer, Empresa Brasileira de Pesquisa Agropecuária

Dr., Pesquisador, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Clima Temperado, Pelotas, RS, Brasil.

Gilberto Nava, Empresa Brasileira de Pesquisa Agropecuária

Dr., Pesquisador, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Clima Temperado, Pelotas, RS, Brasil.

Gustavo Brunetto, Universidade Federal de Santa Maria

Prof. Dr., Departamento de Ciência do Solo, UFSM, Santa Maria, RS, Brasil.

Luciane Almeri Tabaldi, Universidade Federal de Santa Maria

Profa. Dra., Departamento de Biologia, UFSM, Santa Maria, RS, Brasil.

Referências

Alva, A. K., Edwards, D. G., Asher, C. J., & Blamey, F. P. C. (1986). Effects of phosphorus/aluminum molar ratio and calcium concentration on plant response to aluminum toxicity. Soil Science Society of America Journal, 50(1), 133-137. doi: 10.2136/sssaj1986.03615995005000010026x DOI: https://doi.org/10.2136/sssaj1986.03615995005000010026x

Badia, M. B., Maurino, V. G., Pavlovic, T., Arias, C. L., Pagani, M. A., & Andreo, C. S. (2020). Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress. The Plant Journal, 101(1), 653-665. doi: 10.1111/ tpj.14571 DOI: https://doi.org/10.1111/tpj.14571

Bahmani, R., Kim, D. G., Modareszadeh, M., Thompson, A. J., Park, J. H., Yoo, H. H., & Hwang, S. (2020). The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). Environmental Pollution, 257(10), 1-13. doi: 10.1016/j.envpol.2019.113516 DOI: https://doi.org/10.1016/j.envpol.2019.113516

Banhos, O. F. A. A., Brenda, M. D. O., Carvalho, B. M., Veiga, E. B. da, Bressan, A. C. G., Tanaka, F. A. O., & Habermann, G. (2016). Aluminum-induced decrease in CO2 assimilation in ‘Rangpur’ lime is associated with low stomatal conductance rather than low photochemical performances. Scientia Horticulturae, 205(1), 133-140. doi: 10.1016/j.scienta.2016.04.021 DOI: https://doi.org/10.1016/j.scienta.2016.04.021

Baquy, M. A. A., Li, J. Y., Xu, C. Y., Mehmood, K., & Xu, R. K. (2017). Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops. Solid Earth, 8(11), 149-159. doi: 10.5194/se-8-149-2017 DOI: https://doi.org/10.5194/se-8-149-2017

Beckman, T. G., Chaparro, J. X., & Sherman, W. B. (2008). ‘Sharpe’, a clonal plum rootstock for peach. HortScience, 43(7), 2236-2237. doi: 10.21273/HORTSCI.43.7.2236 DOI: https://doi.org/10.21273/HORTSCI.43.7.2236

Betemps, D. L., Paula, B. V., Parent, S. E., Galarca, S. P., Mayer, N. A., Marodin, G. A. B., Rozane, D. E., Natale, W., Melo, G. W. B., Parent, L., & Bruneto, G. (2020). Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods. Agronomy, 10(6), 900. doi: 10.3390/agronomy10060900 DOI: https://doi.org/10.3390/agronomy10060900

Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez, M. (2017). Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8(1767), 1-18. doi: 10.3389/fpls.2017.01767 DOI: https://doi.org/10.3389/fpls.2017.01767

Dorneles, A. O. S., Pereira, A. S., Rossato, L. V., Possebom, G., Sasso, V. M., Bernardy, K., Sandri, R. Q., Nicoloso, F. T., Ferreira, P. A. A., & Tabaldi, L. A. (2016). Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Ciência Rural, 46(3), 506-512. doi: 10.1590/0103-8478cr20150585 DOI: https://doi.org/10.1590/0103-8478cr20150585

Du, H., Huang, Y., Qu, M., Li, Y., Hu, X., Yang, W., Li, H., He, W., Ding, J., Liu, C., Gao, S., Cao, M., Lu, Y., & Zhang, S. (2020). A maize ZmAT6 gene confers aluminum tolerance via reactive oxygen species scavenging. Frontiers in Plant Science, 11(1016), 1-12. doi: 10.3389/fpls.2020.01016 DOI: https://doi.org/10.3389/fpls.2020.01016

Eldem, V. C., Akcay, U. C., Ozhuner, E., Bakır, Y., Uranbey, S., & Unver, T. (2012). Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughputdeepsequencing. PLoS ONE, 7(12), 1-14. doi: 10.1371/journal.pone.0050298 DOI: https://doi.org/10.1371/journal.pone.0050298

Empresa Brasileira de Pesquisa Agropecuária (2009). Manual de análises químicas de solos, plantas e fertilizantes (2a ed.). EMBRAPA.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511790942

He, H., Li, Y., & He, L. F. (2019). Aluminum toxicity and tolerance in Solanaceae plants. South African Journal of Botany, 123(1), 23-29. doi: 10.1016/j.sajb.2019.02.008 DOI: https://doi.org/10.1016/j.sajb.2019.02.008

Hoagland, D. R., & Arnon D. I. (1950). The waterculture method for growing plants without soil. (Circ. 347). Agric. Exp. Stn., Univ. Of California.

Kyveryga, P., Caragea, P. C., Kaiser, M. S., & Blackmer, T. M. (2013). Predicting risk of reduced nitrogen fertilization using hierarchical models and on-farm data. Agronomy Journal, 105(1), 85-94. doi: 10.2134/agronj2012.0218 DOI: https://doi.org/10.2134/agronj2012.0218

Mahdavian, K. (2021). Effect of citric acid on antioxidant activity of red bean (Phaseolus calcaratus L.) under Cr+6 stress. South African Journal of Botany, 139(12), 83-91. doi: 10.1016/j.sajb.2021.02.002 DOI: https://doi.org/10.1016/j.sajb.2021.02.002

Mayer, N. A, & Ueno, B. (2021). Peach tree short life in Rio Grande do Sul State, Brazil. Agrociencia Uruguay, 25(395), 1-17. doi: 10.31285/AGRO.25.395 DOI: https://doi.org/10.31285/AGRO.25.395

Mayer, N. A., Ueno, B., & Antunes, L. E. C. (2009). Seleção e clonagem de porta enxertos tolerantes à morte-precoce do pessegueiro. (Comunicado Técnico, 209). EMBRAPA Clima Temperado.

Mayer, N. A., Ueno, B., Rickes, T. B., & Resende, M. V. L. A. (2020). Cloning of rootstock selections and Prunus spp. cultivars by softwood cuttings. Scientia Horticuturae, 273(1), 1-11. doi: 10.1016/j.scienta.2020.109609 DOI: https://doi.org/10.1016/j.scienta.2020.109609

Mayer, N. A., Ueno, B., Silva, V. A. L., Valgas, R. A., & Silveira, C. A. P. (2015). A morte precoce do pessegueiro associada à fertilidade do solo. Revista Brasileira de Fruticultura, 37(3), 773-778. doi: 10.1590/0100-2945-156/14 DOI: https://doi.org/10.1590/0100-2945-156/14

Nava, G., Reisser, C., Jr., Parent, L.-É., Brunetto, G., Moura-Bueno, J. M., Navroski, R., Benati, J. A., & Barreto, C. F. (2022). Esmeralda peach (Prunus persica) fruit yield and quality response to nitrogen fertilization. Plants, 11(3), 352. doi: 10.3390/ plants11030352 DOI: https://doi.org/10.3390/plants11030352

Padarian, J., Minasny B., & McBratney, A. B. (2020). Machine learning and soil sciences: a review aided by machine learning tools. Soil, 6(1), 35-52. doi: 10.5194/soil-6-35-2020 DOI: https://doi.org/10.5194/soil-6-35-2020

Paula, B. V., Sete, P. B., Trapp, T., Vitto, B., Zalamena, J., Melo, G. W. B., Rozane, D. E., Baldi, E., Toselli, M., & Bruneto, G. (2021). Annual and residual urea nitrogen contribution to the nutrition of peach trees (Prunus persica L.) grown under subtropical climate. Scientia Horticulturae, 284(10), 1-6. doi: 10.1016/j.scienta.2021.110099 DOI: https://doi.org/10.1016/j.scienta.2021.110099

Plummer, M. (2016). Rjags: bayesian graphical models using MCMC.

R Core Team (2022). R: a language and environment for statistical computing.

Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular, 19(10), 1-28. doi: 10.3390/ijms19103073 DOI: https://doi.org/10.3390/ijms19103073

Raj, D., Kumar, A., & Maiti, S. K. (2020). Mercury remediation potential of Brassica juncea (L.) Czern. For clean-up of flyash contaminated sites. Chemosphere, 248(1), 1-9. doi: 10.1016/j.chemosphere.2020.125857 DOI: https://doi.org/10.1016/j.chemosphere.2020.125857

Ranjan, A., Sinha, R., Sharma, T. R., Pattanayak, A., & Singh, A. K. (2021). Alleviating aluminum toxicity in plants: implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiologia Plantarum, 173(4), 1-20. doi: 10.1111/ppl.13382 DOI: https://doi.org/10.1111/ppl.13382

Raseira, M. C. B., Scaranari, C., Franzon, R. C., Feldberg, N. P., & Nakasu, B. H. (2016). ‘BRS Mandinho’: the first platycarpa peach cultivar released in Brazil. Revista Brasileira de Fruticultura, 38(3), 1-4. doi: 10.1590/0100-29452016616 DOI: https://doi.org/10.1590/0100-29452016616

Reighard, G. L., & Loreti, F. (2008). Rootstock development. In D. R. Layne, & D. Bassi, The peach: botany, production and uses (pp. 193-220). Oxfordshire. DOI: https://doi.org/10.1079/9781845933869.0193

Reis, A. R., Lisboa, L. A. M., Reis, H. P. G., Barcelos, J. P. de Q., Santos, E. F., Santini, J. M. K., & Lavres, J. (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiology and Biochemistry, 130(1), 377-390. doi: 10.1016/j.plaphy.2018.07.028 DOI: https://doi.org/10.1016/j.plaphy.2018.07.028

Ribeiro, A. P., Vinecky, F., Duarte, K. E., Santiago, T. R., Casari, R. A. C. N., Hell, A. F., & Molinari, H. B. C. (2021). Enhanced aluminum tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp. BMC Plant Biology, 21(300), 1-15. doi: 10.1186/s12870-021-02975-x DOI: https://doi.org/10.1186/s12870-021-02975-x

Rodrigues, A. A., Vasconcelos, S. C., Fº., Müller, C., Rodrigues, D. A., Sales, J. F., Zuchi, J., & Barbosa, D. P. (2019). Tolerance of Eugenia dysenterica to aluminum: germination and plant growth. Plants, 8(9), 1-15. doi: 10.3390/plants8090317 DOI: https://doi.org/10.3390/plants8090317

Shetty, R., Vidya, C. S., Prakash, N. B., Lux, A., & Vaculík, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Science of the Total Environment, 65(1), 1-11. doi: 10.1016/j.scitotenv.2020.142744 DOI: https://doi.org/10.1016/j.scitotenv.2020.142744

Sun, L., Zhang, M., Liu, X., Mao, Q., Shi, C., Kochian, L. V., & Liao, H. (2020). Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology, 62(7), 984-987. doi: 10.1111/jipb.12942 DOI: https://doi.org/10.1111/jipb.12942

Theobald, C. M., & Talbot, M. (2002). The Bayesian choice of crop variety and fertilizer dose. Applied Statistics, 51(1), 23-26. doi: 10.1111/1467‐9876.04863 DOI: https://doi.org/10.1111/1467-9876.04863

Wei, Y., Han, R., Xie, Y., Jiang, C., & Yu, Y. (2021). Recent advances in understanding mechanisms of plant tolerance and response to aluminum toxicity. Sustainability, 13(4), 1-22. doi: 10.3390/su13041782 DOI: https://doi.org/10.3390/su13041782

Yan, L., Riaz, M., Liu, J., Yu, M., & Cuncang, J. (2021). The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Critical Reviews in Environmental Science and Technology, 52(9), 1-37. doi: 10.1080/10643389.2020.1859306. DOI: https://doi.org/10.1080/10643389.2020.1859306

Zhang, H., Li, Xy., Lin, M., Hu, P., Lai, N., Huang, Z., & Chen, L. (2022). The aluminum distribution and translocation in two citrus species difering in aluminum tolerance. BMC Plant Biology, 22(93), 1-11. doi: 10.1186/s12870-022-03472-5 DOI: https://doi.org/10.1186/s12870-022-03472-5

Zhang, X., Long, Y., Huang, J., & Xia, J. (2019). Molecular mechanisms for coping with al toxicity in plants. International Journal of Molecular Sciences, 20(7), 1-16. doi: 10.3390/ijms20071551 DOI: https://doi.org/10.3390/ijms20071551

Zhu, C. Q., Cao, X. C., Zhu, L. F., Hu, W. J., Hu, A. Y., Abliz, B., Bai, Z. G., Huang, J., Liang, Q. D., Sajid, H., Li, Y. F., Wang, L. P., Jin, Q. Y., & Zhang, J. H. (2019). Boron reduces cell wall aluminum content in rice (Oryza sativa) roots by decreasing H2O2 accumulation. Plant Physiology and Biochemistry, 138(10), 80-90. doi: 10.1016/j. plaphy.2019.02.022 DOI: https://doi.org/10.1016/j.plaphy.2019.02.022

Downloads

Publicado

2023-08-22

Como Citar

Aguilar, M. V. M., Moura-Bueno, J. M., Mayer, N. A., Nava, G., Brunetto, G., & Tabaldi, L. A. (2023). Tolerância de cultivares e seleções clonais de porta-enxertos de pessegueiro ao excesso de alumínio. Semina: Ciências Agrárias, 44(3), 1127–1144. https://doi.org/10.5433/1679-0359.2023v44n3p1127

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)