Osmopriming, antioxidative action, and thermal stress in sunflower seeds with different vigor levels

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n3Supl1p1435

Keywords:

Abiotic stress, Oxidative stress, Helianthus annuus L., Temperature, Seed vigor.

Abstract

The osmopriming technique can reduce the period between sowing and the emergence of seedlings in the field, as well as favor seed performance under stress conditions. This study aimed to evaluate the effect of osmopriming on the physiological performance and antioxidative enzymatic activity of sunflower seeds with different vigor levels and exposed to thermal stress. Three sunflower seed lots of the cultivar Hélio 250 were used. Initially, the seeds were evaluated by germination and vigor tests to characterize the lots. Subsequently, they were primed in a polyethylene glycol 6000 solution at -2.0 MPa and 15 °C for 8 h. Then, the primed and unprimed seeds were tested for physiological quality (germination, first germination count, percentage and emergence speed index of seedlings, and seedling dry matter) and determination of the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POX) under three temperatures: 15 °C (sub-optimal), 25 °C (optimal), and 35 °C (supra-optimal). The physiological tests allowed classifying lots 1, 2, and 3 into three different vigor levels, i.e., high, medium, and low, respectively. Osmopriming favored the performance of sunflower seeds in terms of germination and vigor at all the analyzed temperatures. This effect was more pronounced in lots of lower physiological quality at sub-optimal and supra-optimal temperatures. Sub-and supra-optimal temperatures led to a reduction in the physiological performance of seeds, mainly in less vigorous lots. In general, osmopriming favored an increase in the activity of the enzymes SOD, CAT, POX, and APX, mainly in low vigor seeds exposed to sub and supra-optimal temperatures. Osmopriming of sunflower seeds in PEG 6000 at -2.0 MPa for 8 hours is efficient to improve the performance of less vigorous lots under stress due to the sub- and supra-optimal temperatures, favoring an increase in the activity of enzymes of the antioxidative system.

Author Biographies

Tiago Teixeira Viana Barros, Federal University of Viçosa

M.Sc.in Crop Science, Federal University of Viçosa, Agronomy Department, UFV, Viçosa, MG, Brazil.

Daniel Teixeira Pinheiro, Federal University of Viçosa

PhD. in Crop Science, Agronomy Department, UFV, Viçosa, MG, Brazil.

Guilherme Fontes Valory Gama, Federal University of Viçosa

PhD. Student in Crop Science, Agronomy Department, UFV, Viçosa, MG, Brazil.

Denise Cunha Fernandes dos Santos Dias, Federal University of Viçosa

Profa. of Agronomy Department, UFV, Viçosa, MG, Brasil.

Laércio Junio da Silva, Federal University of Viçosa

Prof. of Agronomy Department, UFV, Viçosa, MG, Brasil.

References

Ahmad, I., Basra, S. M. A., Hussain, S., Hussain, S. A., Rehman, H., Rehman, A., & Ali, A. (2015). Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. Journal of Environmental and Agricultural Sciences, 3(18.6), 14-22.

Akladious, S. A. (2014). Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress. Protoplasma, 251(3), 625-638. doi: 10.1007/s00709-013-0563-2

Ali, Q., Daud, M. K., Haider, M. Z., Ali, S., Rizwan, M., Aslam, N.,… Zhu, S. J. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119(2017), 50-58. doi: 10.1016/j. plaphy.2017.08.010

Anderson, M. D., Prasad, T. K., & Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109(4), 1247-1257. doi: 10.1104/pp.109.4.1247

Araújo, S. D. S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., & Balestrazzi, A. (2016). Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science, 7, 646. doi: 10.3389/fpls.2016.00646

Bailly, C., Benamar, A., Corbineau, F., & Côme, D. (2000). Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research, 10(1), 35-42. doi: 10.1017/S09602585 00000040

Balabusta, M., Szafrańska, K., & Posmyk, M. M. (2016). Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science, 7(2016), 575. doi: 10.3389/fpls.2016.00575

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. doi: 10.1016/0003-2697(71)90370-8

Bewley, J. D., Bradford, K., & Hilhorst, H. (2013). Seeds: physiology of development, germination and dormancy. New York: Springer Science & Business Media.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi: 10.1016/ 0003-2697(76)90527-3

Chance, B., & Maehly, A. C. (1955). Assay of catalase and peroxidases. Methods in Enzymology, 2(136), 764-775. doi: 10.1016/S0076-6879(55)02300-8

Chojnowski, M., Corbineau, F., & Côme, D. (1997). Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Science Research, 7(4), 323-332. doi: 10.1017/S096025850000372X

Dai, L. Y., Zhu, H. D., Yin, K. D., Du, J. D., & Zhang, Y. X. (2017). Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chilean Journal of Agricultural Research, 77(2), 118-125. doi: 10.4067/S0718-58392017000200118

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(2014), 53. doi: 10.3389/fenvs.2014.00053

De Bont, L., Naim, E., Arbelet-Bonnin, D., Xia, Q., Palm, E., Meimoun, P.,… Bouteau, F. (2019). Activation of plasma membrane H+-ATPases participates in dormancy alleviation in sunflower seeds. Plant Science, 280(2019), 408-415. doi: 10.1016/j.plantsci.2018.12.015

De Gara, L. (2004). Class III peroxidases and ascorbate metabolism in plants. Phytochemistry Reviews, 3(1-2), 195-205. doi: 10.1023/B:PHYT.0000047795.82713.99

Del Longo, O. T., González, C. A., Pastori, G. M., & Trippi, V. S. (1993). Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant and Cell Physiology, 34(7), 1023-1028. doi: 10.1093/oxfordjournals.pcp.a078515

Finch-Savage, W. E., & Bassel, G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567-591. doi: 10.1093/jxb/erv490

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314. doi: 10.1104/pp.59.2.309

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi: 10.1016/j.plaphy.20 10.08.016

Górnik, K., & Lahuta, L. B. (2017). Application of phytohormones during seed hydropriming and heat shock treatment on sunflower (Helianthus annuus L.) chilling resistance and changes in soluble carbohydrates. Acta Physiologiae Plantarum, 39(5), 118. doi: 10.1007/s11738-017-2413-x

Górnik, K., Badowiec, A., & Weidner, S. (2014). The effect of seed conditioning, short-term heat shock and salicylic, jasmonic acid or brasinolide on sunflower (Helianthus annuus L.) chilling resistance and polysome formation. Acta Physiologiae Plantarum, 36(10), 2547-2554. doi: 10.1007/s11738-0141626-5

Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84(2), 450-455. doi: 10.1104/pp.84.2.450

Henning, L., Ceronio, G., & Nel, A. A. (2017). Emergence response of sunflower (Helianthus annuus) cultivars to supra-optimal soil temperatures. South African Journal of Plant and Soil, 34(3), 223-229. doi: 10.1080/02571862.2016.1266400

Hewezi, T., Léger, M., El Kayal, W., & Gentzbittel, L. (2006). Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. Journal of Experimental Botany, 57(12), 3109-3122. doi: 10.1093/jxb/erl080

Hussain, S., Khan, F., Hussain, H. A., & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science, 7(2016), 116. doi: 10.33 89/fpls.2016.00116

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192(2016), 38-46. doi: 10.1016/j.jplph.2015.12.011

Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 35(5), 1381-1396. doi: 10.1007/s11738-012-1186-5

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. doi: 10.1098/rsta.2015.0202

Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315-319. doi: 10.1104/pp.57.2.315

Kononenko, G. P., Ustyuzhanina, M. I., & Burkin, A. A. (2018). The problem of safe sunflower (Helianthus annuus L.) use for food and fodder purposes. Agricultural Biology, 53(3), 485-498. doi: 10.15389/ agrobiology.2018.3.485eng

Kumar, J. S. P., Prasad, S. R., Banerjee, R., & Thammineni, C. (2015). Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of Botany, 116(4), 663-668. doi: 10.1093/aob/mcv 0 98

Li, Z., Gao, Y., Zhang, Y., Lin, C., Gong, D., Guan, Y., & Hu, J. (2018). Reactive oxygen species and gibberellin acid mutual induction to regulate tobacco seed germination. Frontiers in Plant Science, 9(2016), 1279. doi: 10.3389/fpls.2018.01279

Li, Z., Xu, J., Gao, Y., Wang, C., Guo, G., Luo, Y.,… Hu, J. (2017). The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Frontiers in Plant Science, 8(2017), 1153. doi: 10.3389/fpls.2017.01153

Maguire, J. D. (1962). Speed of germination Aid in selection and evaluation for seedling emergence and vigor 1. Crop Science, 2(2), 176-177. doi: 10.2135/cropsci1962.0011183X000200020033x

Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. doi: 10.1104/pp.51.5.914

Ministério da Agricultura, Pecuária e Abastecimento (2009). Regras para análise de sementes. Brasília: MAPA/ACS. Recuperado de http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf

Ministério da Agricultura, Pecuária e Abastecimento (2013). Padrões para produção e comercialização de sementes de girassol. Instrução Normativa no 45, de 17 de Setembro de 2013. Brasília. Recuperado de http://www.abrasem.com.br/wp-content/uploads/2012/10/Instru%C3%A7%C3%A3o-Normativa-n% C2%BA-45-de-17-de-Setembro-de-2013-Padr%C3%B5es-de-Identidade-e-Qualiidade-Prod-e-Comerc-de-Sementes-Grandes-Culturas-Republica%C3%A7%C3%A3o-DOU-20.09.13.pdf

Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. doi: 10.1093/oxfordjournals pcp.a07 6232

Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80(2018), 3-12. doi: 10.1016/j.semcdb.2017.07.013

Pál, M., Gondor, O., & Janda, T. (2013). Role of salicylic acid in acclimation to low temperature. Acta Agronomica Hungarica, 61(2), 161-172. doi: 10.1556/AAgr.61.2013.2.7

Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8), 1281-1293. doi: 10.1007/s002 99-015-1784-y

Peixoto, P. H. P., Cambraia, J., Sant’Anna, R., Mosquim, P. R., & Moreira, M. A. (1999). Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11(3), 137-143.

R Core Team (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Rondanini, D. P., Savin, R., & Hall, A. J. (2007). Estimation of physiological maturity in sunflower as a function of fruit water concentration. European Journal of Agronomy, 26(3), 295-309. doi: 10.1016/j. eja.2006.11.001

Seiler, G. J., Qi, L. L., & Marek, L. F. (2017). Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Science, 57(3), 1083-1101. doi: 10.2135/cropsci2016.10.0856

Singh, N. B., Singh, D., & Singh, A. (2015). Biological seed priming mitigates the effects of water stress in sunflower seedlings. Physiology and Molecular Biology of Plants, 21(2), 207-214. doi: 10.1007/s12298-015-0291-5

Su, L., Lan, Q., Pritchard, H. W., Xue, H., & Wang, X. (2016). Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiology and Biochemistry, 109(2016), 406-415. doi: 10.1016/j.plaphy.2016.10.025

Wang, Y., Cui, Y., Hu, G., Wang, X., Chen, H., Shi, Q.,... Zhang, Y. (2018). Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates. Plant physiology and Biochemistry, 133(2018), 1-10. doi: 10.1016/j.plaphy.2018.10. 020

Ye, N., Zhu, G., Liu, Y., Zhang, A., Li, Y., Liu, R.,… Zhang, J. (2012). Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 63(5), 1809-1822. doi: 10.1093/jxb/err336

Zhang, F., Yu, J., Johnston, C. R., Wang, Y., Zhu, K., Lu, F.,… Zou, J. (2015). Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS One, 10(10). doi: 10.1371

Downloads

Published

2021-04-22

How to Cite

Barros, T. T. V., Pinheiro, D. T., Gama, G. F. V., Dias, D. C. F. dos S., & Silva, L. J. da. (2021). Osmopriming, antioxidative action, and thermal stress in sunflower seeds with different vigor levels. Semina: Ciências Agrárias, 42(3Supl1), 1435–1452. https://doi.org/10.5433/1679-0359.2021v42n3Supl1p1435

Issue

Section

Articles

Most read articles by the same author(s)