Root growth and antioxidant enzyme responses to aluminium stress in sugarcane

Autores/as

DOI:

https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3449

Palabras clave:

Toxic aluminium, ROS, Hydroponic system, Saccharum spp., Screening method.

Resumen

Aluminium (Al) toxicity in acid soils is a major abiotic stress that can limit plant production worldwide. Al toxicity directly inhibits root development and exacerbates oxidative stress in the plant. Sugarcane is mostly cultivated in tropical regions and is often exposed to phytotoxic concentrations of soil Al. In this study, our objectives were to evaluate nine sugarcane cultivars on their tolerance to Al in a hydroponic system, investigating the effects of 143µM {Al3+} on root growth and on activity of the antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). The screening method proposed was suitable for a rapid, reliable and reproducible procedure of the sugarcane cultivars. Exposure to Al for three days altered root growth and activity of enzymes of the nine sugarcane cultivars. However, the magnitude of the alterations varied significantly among cultivars. The cultivar RB928064 was classified as Al-tolerant and the cultivar RB835486 as Al-sensitive. Increases in enzyme activity after Al exposure varied from 4 to 46%, with average increases of 19% in APX, 20% in CAT, and 8% in SOD. The variations induced by Al in enzyme activity, however, did not correlate significantly with those variations induced by Al in the root growth.

Biografía del autor/a

Lucas Smith Pimenta, Universidade Federal de Carlos 

Discente do Curso de Mestrado do Programa de Pós-Graduação em Produção Vegetal e Bioprocessos Associados, Centro de Ciências Agrárias, Universidade Federal de São Carlos, UFSCar, Araras, SP, Brasil.

Eduardo Dal’Ava Mariano, Universidade Federal de Carlos 

Prof. Dr., Programa de Pós-Graduação em Produção Vegetal e Bioprocessos Associados, Centro de Ciências Agrárias, Departamento de Desenvolvimento Rural, UFSCar, Araras, SP, Brasil.

Rodrigo Gazaffi, Universidade Federal de Carlos 

Prof. Dr., Programa de Pós-Graduação em Produção Vegetal e Bioprocessos Associados, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal, UFSCar, Araras, SP, Brasil.

Monalisa Sampaio Carneiro, Universidade Federal de Carlos 

Profa Dra, Programa de Pós-Graduação em Produção Vegetal e Bioprocessos Associados, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal, UFSCar, Araras, SP, Brasil.

Citas

Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. doi: 10.1034/j.1399-3054. 1998.1040217.x

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. doi: 10. 1016/0003-2697(76)90527-3

Caniato, F. F., Guimarães, C. T., Schaffert, R. E., Alves, V. M. C., Kochian, L. V., Borém, A.,… Magalhães, J. V. (2007). Genetic diversity for aluminum tolerance in sorghum. Theoretical and Applied Genetics, 114(1), 863-876. doi: 10.1007/s00122-006-0485-x

Cia, M. C., Guimarães, A. C. R., Medici, L. O., Chabregas, S. M., & Azevedo, R. A. (2012). Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Annals of Applied Biology, 161(3), 313-324. doi: 10.1111/j.1744-7348.2012.00575.x

Exley, C. (2009). Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends in Biochemical Science, 34(12), 589-593. doi: 10.1016/j.tibs.2009.07.006.

Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology, 153(3), 1678-1691. doi: 10.1104/pp.110.156794

Ferreira, R. P., Moreira, A., & Rassini, J. B. (2006). Toxidez de alumínio em culturas anuais. São Carlos: EMBRAPA Pecuária Sudeste.

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314. doi: 10.1104/pp.59.2.309

Hepperle, D. (2016). WinIAP© - Calculation of ion activities and calcite saturation index. Win32-Version, 1994. Retrieved from http://science.do-mix.de

Hetherington, S. J., Asher, C. J., & Blamey, F. P. C. (1986). Tolerance of sugarcane to Al in soil and solution culture. Proceedings of Australian Society of Sugar Cane Technologists Congress, 8(1), 63-68. Retrieved from www.assct.com.au/media/pdfs/1986_pa_ag10.pdf

Hetherington, S. J., Asher, C. J., & Blamey, F. P. C. (1988). Comparative tolerance of sugarcane, navybean, soybean and maize to aluminium toxicity. Australian Journal of Agricultural Research, 39(2), 171-176. doi: 10.1071/ar9880171

Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhães, J. V. (2015). Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66(1), 571-598. doi: 10. 1146/annurev-arplant-043014-114822

Kumari, M., Taylor, G. J., & Deyholos, M. K. (2008). Transcriptomic responses to aluminium stress in root of Arabidopsis thaliana. Molecular Genetics and Genomics, 279(4), 339-357. doi: 10.1007/s00438-007-0316-z

Maia, C., Almeida, C. F., Costa, P. M. A., Melo, J. A. G. de, Jr., Silveira, G. da, Peternelli, L. A.,... Bhering, L. L. (2018). Phenotypic plasticity of sugarcane genotypes under aluminum stress. Journal of Experimental Agriculture International, 22(3), 1-11. doi: 10.9734/JEAI/2018/40984

Moldes, C. A., Medici, L. O., Abrahão, O. S., Tsai, S. M., & Azevedo, R. A. (2008). Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiologiae Plantarum, 30(4), 469-479. doi: 10.1007/s11738-008-0144-8

Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signalling in plants. Seminars in Cell & Developmental Biology, 80(1), 3-12. doi: 10.1016/j.semcdb.2017.07.013

R Development Core Team (2011). R: A Language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing. Retrieved from http://www.R-project.org

Rahim, F., Almeida, V. C., Viana, J. M. S., Ribeiro, C., Risso, L. A., & Ribeiro, M. P. (2019). Identification of contrasting tropical popcorn inbreds for studying aluminum toxicity tolerance inheritance. Euphytica, 215(3), 47-54. doi: 10.1007/s10681-019-2372-y

Singh, S., Tripathi, D. K., Singh, S., Sharma, S., Dubey, N. K., Chauhan, D. K., & Vaculík, M. (2017). Toxicity of aluminium on various levels of plant cells and organism: A review. Environmental and Experimental Botany, 137(2), 177-193. doi: 10.1016/j.envexpbot.2017.01.005

Smith, D. M., Inman-Bamber, N. G., & Thorburn, P. J. (2005). Growth and function of the sugarcane root system. Field Crops Research, 92(3), 169-183. doi: 10.1016/j.fcr.2005.01.017

Watt, D. (2003). Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. Journal of Experimental Botany, 54(385), 1163-1174. doi: 10.1093/jxb/erg128

Descargas

Publicado

2020-11-06

Cómo citar

Pimenta, L. S., Mariano, E. D., Gazaffi, R., & Carneiro, M. S. (2020). Root growth and antioxidant enzyme responses to aluminium stress in sugarcane. Semina: Ciências Agrárias, 41(6Supl2), 3449–3456. https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3449

Número

Sección

Comunicações

Artículos similares

También puede {advancedSearchLink} para este artículo.