Essential oil from orange peel in the control of Botrytis cinerea and in the postharvest conservation of ‘Benitaka’ table grape

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n4p1109

Keywords:

Gray mold, Essential oil, Fruit quality, Sulfur dioxide, Vitis vinifera L.

Abstract

The objective of this work was to evaluate the efficiency of essential oil from orange peel in the refrigerated conservation of the ‘Benitaka’ table grape, as well as to evaluate its in vitro effectiveness on Botrytis cinerea, the causal agent of gray mold. Grapes were harvested from a commercial field in the municipality of Cambira, Paraná, Brazil, during the 2022 and 2023 seasons. The experimental design was completely randomized, with four treatments and five replications of five bunches per plot. The treatments were: a) control; b) essential oil from orange peel at 4.0 mL of the commercial product (c.p.) L-1; c) dual phase SO2-generating pads containing 1 and 4 g of the active ingredient (a.i.) in the fast and slow phases, respectively; and d) essential oil from orange peel at 4.0 mL c.p. L-1 associated with the dual phase SO2-generating pads containing 1 and 4 g of the a.i. in the fast and slow phases, respectively. The commercial product containing 61.14 g L-1 (6% w/v) of 4-isopropenyl-1-methylcyclohexane, the source of orange essential oil, was applied by spraying it directly onto the bunches. After drying, the grape bunches were stored in a cold chamber at 1.0±1°C and 95% relative humidity. The following variables were assessed 30 and 45 days after the beginning of cold storage: the incidence of gray mold on berries, loss of bunch mass, stem browning, shattered berries, and bleaching. The minimum inhibitory concentration for the development of B. cinerea was determined, and fungal mycelia were observed using scanning electron microscopy to evaluate the in vitro efficacy of orange essential oil. The data were subjected to analysis of variance, and the means were compared using Fisher's difference test at 5% probability. The effectiveness of orange essential oil in suppressing the development of B. cinerea was demonstrated both in vivo and in vitro, making it a safe alternative for the postharvest conservation of ‘Benitaka’ table grapes.

Downloads

Download data is not yet available.

Author Biographies

Aline Cristina de Aguiar, Universidade Estadual de Londrina

PhD Student in the Graduate Program in Agronomy, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

João Paulo de Oliveira , Universidade Tecnológica Federal do Paraná

PhD Student in the Graduate Program in Bioinformatics, Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR, Brazil.

Marcos Letaif Gaeta , Universidade Estadual de Londrina

Postdoctoral Researcher, Department of Microbiology, UEL, Londrina, PR, Brazil.

Danielle Mieko Sakai, Universidade Estadual de Londrina

Student Graduation in Agronomy, UEL, Londrina, PR, Brazil.

Bianca Liriel Martins Barbosa, Universidade Estadual de Londrina

Student Graduation in Agronomy, UEL, Londrina, PR, Brazil.

Stefanie do Prado da Silva, Universidade Estadual de Londrina

Student Graduation in Agronomy, UEL, Londrina, PR, Brazil.

Admilton Gonçalves de Oliveira Júnior, Universidade Estadual de Londrina

Prof., PhD, Department of Microbiology, UEL, Londrina, PR. Brazil.

Sergio Ruffo Roberto, Universidade Estadual de Londrina

Prof., PhD, Department of Agronomy, UEL, Londrina, PR. Brazil.

References

Abo-Elyousr, K. A. M., Al-Qurashi, A. D., & Almasoudi, N. M. (2021). Evaluation of the synergy between Schwanniomyces vanrijiae and propolis in the control of Penicillium digitatum on lemons. Egyptian Journal of Biological Pest Control, 31(66), 1-10. doi: 10.1186/s41938-021-00415-4 DOI: https://doi.org/10.1186/s41938-021-00415-4

Aguiar, A. C. de, Higuchi, M. T., Ribeiro, L. T. M., Leles, N. R., Bosso, B. E. C., Shimizu, G. D., Silva, M. J. R. da, Marques, V. V., Yamashita, F., Youssef, K., & Roberto, S. R. (2023). Bio-based and SO2-generating plastic liners to extend the shelf life of ‘Benitaka’ table grapes. Postharvest Biology and Technology, 197, 12217. doi: 10.1016/j.postharvbio.2022.112217. DOI: https://doi.org/10.1016/j.postharvbio.2022.112217

Ahmed, S., Roberto, S. R., Domingues, A. R., Shahab, M., Chaves, O. J., Jr., Sumida, C. H., & Souza, R. T. de. (2018). Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae, 4(4), 29. doi: 10.3390/horticulturae4040029 DOI: https://doi.org/10.3390/horticulturae4040029

Ahmed, S., Roberto, S. R., Youssef, K., Colombo, R. C., Shahab, M., Chaves, O. J., Jr., Sumida, C. H., & Souza, R. T. (2019). Postharvest preservation of the new hybrid seedless grape, ‘BRS Isis’, grown under the double-cropping a year system in a subtropical area. Agronomy, 9(10), 603 doi: 10.3390/agronomy9100603 DOI: https://doi.org/10.3390/agronomy9100603

Almasaudi, N. M., Al-Qurashi, A. D., Elsayed, M. I., & Abo-Elyousr, K. A. M. (2022). Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. Journal of Plant Pathology, 104, 317-328. doi: 10.1007/s42161-021-01008-8 DOI: https://doi.org/10.1007/s42161-021-01008-8

Antoniolli, L., & Lima, M. A. C. de. (2008). Boas práticas de fabricação e manejo na colheita e pós-colheita de uvas finas de mesa. EMBRAPA Uva e Vinho.

Arruda, M. C., Jacomino, A. P., Trevisan, M. J., Jeronimo, E. M., & Moretti, C. L. (2011). Atmosfera modificada em laranja ‘Pêra’ minimamente processada. Bragantia, 70(3), 664-671. doi: 10.1590/S0006-87052011000300023 DOI: https://doi.org/10.1590/S0006-87052011000300023

Associação Nacional dos Exportadores de Sucos Cítricos (2021). Citrus BR. https://citrusbr.com/

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological efects of essential oils - a review. Food and Chemical Toxicology, 46(2), 446-475. doi: 10.1016/j.fct.2007.09.106 DOI: https://doi.org/10.1016/j.fct.2007.09.106

Bonett, L. P., Muller, G. M., Wessling, C. R., & Gamelo, F. P. (2012). Extrato etanólico de representantes de cinco famílias de plantas e óleo essencial da família Asteraceae sobre o fungo Colletotrichum gloeosporioides coletados de frutos de mamoeiro (Carica papaya L.). Revista Brasileira de Agroecologia, 7(3), 116-125.

Champa, H. (2015). Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). Journal of the National Science Foundation of Sri Lanka, 43(1), 3-9. DOI: https://doi.org/10.4038/jnsfsr.v43i1.7921

Chaves, O. J., Jr., Youssef, K., Koyama, R., Ahmed, S., Domingues, A. R., Mühlbeier, D. T., & Roberto, S. R. (2019). Control of gray mold on clamshell-packaged ‘Benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens, 8(4), 271. doi: 10.3390/pathogens8040271 DOI: https://doi.org/10.3390/pathogens8040271

Colombo, R. C., Souza, R. T. de, Cruz, M. A. da, Carvalho, D. U. de, Koyama, R., Bilck, A. P., & Roberto, S. R. (2018). Postharvest longevity of 'BRS Vitória' seedless grapes subjected to cold storage and acibenzolar-S-methyl application. Pesquisa Agropecuária Brasileira, 53(7), 809-814. doi: 10.1590/s0100-204x2018000700004 DOI: https://doi.org/10.1590/s0100-204x2018000700004

Crisosto, C. H. (2008). Grapes, fumigation with sulfur dioxide (SO2). WFLO Commodity Storage Manual. http://ucanr.edu/datastoreFiles/234-2689.pdf

Crisosto, C. H., & Mitchell, F. G. (2002). Postharvest handling systems: table grapes. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (pp. 357-363). Oakland.

Dantas, B. C., Higuchi, M. T., Aguiar, A. C. de, Bosso, B. E., & Roberto, S. R. (2022). Postharvest conservation of ‘BRS Nubia’ hybrid table grape subjected to field ultra-fast SO2-generating pads before packaging. Horticulturae, 8(4), 285. doi: 10.3390/horticulturae8040285 DOI: https://doi.org/10.3390/horticulturae8040285

Elad, Y., Vivier, M., & Fillinger, S. (2015). Botrytis: the good, the bad and the ugly. In S. Fillinger, Y. Elad, & M. Vivier (Eds.), Botrytis - the fungus, the pathogen and its management in agricultural systems (pp. 1-15). Cham. DOI: https://doi.org/10.1007/978-3-319-23371-0_1

Feliziani, E., Santini, M., Landi, L., & Romanazzi, G. (2013). Pre and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology, 78, 133-138. doi: 10.1016/j.postharvbio.2012.12.004 DOI: https://doi.org/10.1016/j.postharvbio.2012.12.004

Fernández-Trujillo, J. P., Obando-Ulloa, J. M., Baró, R., & Martínez, J. A. (2012). Quality of two table grape guard cultivars treated with single or dual-phase release SO2 generators. Journal of Applied. Botany and Food Quality, 82(1), 1-8.

Ferronatto, A. N., & Rossi, R. C. (2018). Extração e aplicação do óleo essencial da casca da laranja como um ingrediente natural. Estudos Tecnológicos em Engenharia, 12(2), 78-93. doi: 10.4013/ete.2018.122.05 DOI: https://doi.org/10.4013/ete.2018.122.05

Fontana, D. C., Dourado, D., Neto, Pretto, M. M., Mariotto, A. B., Caron, B. O., Kulczynski, S. M., & Schmidt, D. (2021). Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338, 108980. doi: 10.1016/j.ijfoodmicro.2020.108980 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108980

Food and Agriculture Organization (2005). Post-harvest Compendium GRAPE Post-harvest Operations. FAO.

Food and Drug Administration (2024). Generally recognized as safe: 21 CFR 182 - substances GRAS in food. FDA. https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras

Garcia, C., Rodrigues, J. D., Mazaro, S. M., Botelho, R. V., & Faria, C. M. D. R. (2019). Essential oils in the control of Botrytis cinera: influence on postharvest quality of Rubi grapes. Brazilian Journal of Food Technology, 22, e2018177. doi: 10.1590/1981-6723.17718 DOI: https://doi.org/10.1590/1981-6723.17718

Gorgatti, A., Netto, Gayet, J. P., Bleinhot, E. W., Matallo, M., Garcia, H., Garcia, A. E., Ardito, E. F. G., & Bordin, M. (1993). Uva para exportação: procedimentos de colheita e pós-colheita. EMBRAPA-SPI FRUPEX (2). https://docplayer.com.br/72807404-Ministro-da-agricultura-do-abastecimento-e-da-reforma-agraria-dejandir-dalpasquale.html

Henríquez, J. L., & Pinochet, S. (2016). Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Horticulturae, 1144, 267-272. doi: 10.17660/ActaHortic.2016.1144.39 DOI: https://doi.org/10.17660/ActaHortic.2016.1144.39

Hernández, A., Ruiz-Moyano, S., Galván, A. I., Merchán, A. V., Nevado, F. P., Aranda, E., Serradilla, M. J., Córdoba, M. de G., & Martín, A. (2021). Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biology, 125(2), 143-152. doi: 10.1016/j.funbio.2020.05.005 DOI: https://doi.org/10.1016/j.funbio.2020.05.005

Instituto Adolfo Lutz (2008). Procedimentos e determinações gerais. In O. Zenebon, N. S. Pascuet, & P. Tiglea (Orgs.), Métodos físico-químicos para análise de alimentos (4a ed., pp. 85-104). São Paulo. http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_3_19/analisedealimentosial _2008.pdf

Instituto Brasileiro de Geografia e Estatística (2023). Produção de laranja. IBGE. https://www.ibge.gov.br/explica/producao-agropecuaria/laranja/br

International Organisation of Vine and Wine (2023). World statistics. OIV. https://www.oiv.int/what-we-do/global-report?oiv

Jacob, R. G. (2017). Óleos essenciais como matéria-prima sustentável para o preparo de produtos com maior valor agregado. Revista Virtual de Química, 9(1).

Kader, A. A. (2013). Postharvest technology of horticultural crops - an overview from farm to fork. Ethiopian Journal Applied Science and Technology, (1), 1-8.

Knaak, N., & Fiuza, L. M. (2010). Potential of essential plant oils to control insects and microorganisms. Neotropical Biology and Conservation, 5(2), 120-132. doi: 10.4013/nbc.2010.52.08 DOI: https://doi.org/10.4013/nbc.2010.52.08

Lichter, A., Zutahy, Y., Kaplunov, T., & Lurie, S. (2008). Evaluation of table grape storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. Horttechnology, 18(2), 206-214. doi: 10.21273/horttech.18.2.206 DOI: https://doi.org/10.21273/HORTTECH.18.2.206

Liu, P., Li, D. L., Xu, W. C., & Fu, Y. B. (2015). Research on SO2 controlled release packaging on the preservation performance of ‘Kyoho’ grapes. Applied Mechanics and Materials, 731, 369-373. doi: 10.4028/www.scientific.net/AMM.731.369 DOI: https://doi.org/10.4028/www.scientific.net/AMM.731.369

Lurie, S., Pesis, E., Gadiyeva, O., Feygenberg, O., Ben-Arie, R., Kaplunov, T., Zutahy, Y., & Lichter, A. (2006). Modified ethanol atmosphere to control decay of table grapes during storage. Postharvest Biology and Technology, 42(3), 222-227. doi: 10.1016/j.postharvbio.2006.06.011 DOI: https://doi.org/10.1016/j.postharvbio.2006.06.011

Martínez-Romero, D., Guillén, F., Valverde, J. M., Bailén, G., Zapata, P., Serrano, M., Castillo, S., & Valero, D. (2007). Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. International Journal of Food Microbiology, 115(2), 144-148. doi: 10.1016/j.ijfoodmicro.2006.10.015 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.015

Mattiuz, B., Miguel, A. C. A., Galati, V. C., & Nachtgal, J. C. (2009). Efeito da temperatura no armazenamento de uvas apirênicas minimamente processadas. Revista Brasileira de Fruticultura, 31(1), 44-52. doi: 10.1590/S0100-29452009000100008 DOI: https://doi.org/10.1590/S0100-29452009000100008

Ministério da Agricultura, Pecuária e Abastecimento (2018). Referencial fotográfico para os produtos hortícolas. MAPA. https://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=661183307

Mühlbeier, D. T., Ribeiro, L. T., Higuchi, M. T., Khamis, Y., Chaves-Júnior, O. J., Koyama, R., & Roberto, S. R. (2021). SO2-generating pads reduce gray mold in clamshell-packaged ‘Rubi’table grapes grown under a two-cropping per year system. Semina: Ciências Agrárias, 42(3), 1069-1086. doi: 10.5433/1679-0359.2021v42n3p1069 DOI: https://doi.org/10.5433/1679-0359.2021v42n3p1069

Nelson, K. E. (1983). Retarding deterioration of table grapes with in-package sulfur dioxide generators with and without refrigeration. Acta Horticulturae, 138, 121-130. doi: 10.17660/ActaHortic.1983.138.13 DOI: https://doi.org/10.17660/ActaHortic.1983.138.13

Neves, L., Silva, V. X., Benedette, R. M., Prill, M. A. S., Vieites, R. L., & Roberto, S. R. (2008). Conservação de uvas " Crimson Seedless" e" Itália", submetidas a diferentes tipos de embalagens e dióxido de enxofre (SO2). Revista Brasileira de Fruticultura, 30(1), 65-73. doi: 10.1590/s0100-29452008000100014 DOI: https://doi.org/10.1590/S0100-29452008000100014

Ngcobo, M. E. K., Opara, U. L., & Thiart, G. D. (2011). Effects of packaging liners on cooling rate and quality attributes of table grape (cv. Regal Seedless). Packaging Technology and Science, 25(2), 73-84. doi: 10.1002/pts.961 DOI: https://doi.org/10.1002/pts.961

Nitsche, P. R., Caramori, P. H., Ricce, W. da S., & Pinto, L. F. D. (2019). Atlas climático do Estado do Paraná. IAPAR. https://www.idrparana.pr.gov.br/Pagina/Atlas-Climatico

Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). Gras, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41-52. doi: 10.1016/j.postharvbio.2016.04.017 DOI: https://doi.org/10.1016/j.postharvbio.2016.04.017

Patel, R. M., & Jasrai, Y. T. (2011). Evaluation of fungitoxic potency of medicinal plant volatile oils (VOs) against plant pathogenic fungi. Pesticide Research Journal, 23(2), 168-171.

Pedrotti, C., Marcon, A. R., Delamare, A. P. L., Echeverrigaray, S., Ribeiro, R. T. S., & Schwambach, J. (2019). Alternative control of grape rots by essential oils of two Eucalyptus species. Journal of the Science of Food and Agriculture, 99(14), 6552-6561. doi: 10.1002/jsfa.9936 DOI: https://doi.org/10.1002/jsfa.9936

Saito, S., & Xiao, C. L. (2017). Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries. Acta Horticulturae, 1180, 123-128. doi: 10.17660/actahortic.2017.1180.17 DOI: https://doi.org/10.17660/ActaHortic.2017.1180.17

Shehata, S. A., Emad, A. A., Marwa, R. A., Reda, M. M., Rwotonen, I. B., & Karima, F. A. (2020). Effect of some citrus essential oils on postharvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy, 10(10), 1466. doi: 10.3390/agronomy10101466 DOI: https://doi.org/10.3390/agronomy10101466

Silva, D. M. M. H., & Bastos, C. N. (2007). Atividade antifúngica de óleos essenciais de espécies de Piper sobre Crinipellis perniciosa, Phytophthora palmivora e Phytophthora capsici. Fitopatologia Brasileira, 32(2), 143-145. doi: 10.1590/s0100-41582007000200008 DOI: https://doi.org/10.1590/S0100-41582007000200008

Simionato, A. S., Navarro, M. O. P., Jesus, M. L. A. de, Barazetti, A. R., Silva, C. S. da, Simões, G. C., Balbi-Peña, M. I., Mello, J. C. P. de, Panagio, L. A., Almeida, R. S. C. de, Andrade, G., & Oliveira, A. G. de. (2017). The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cinerea produced by Pseudomonas aeruginosa LV strain. Frontiers in Microbiology, 8, 1102. doi: 10.3389/fmicb.2017.01102 DOI: https://doi.org/10.3389/fmicb.2017.01102

Simon, J. M., Schwan-Estrada, K. R. F., Jardinetti, V. do A., Oliva, L. S. de C., Silva, J. B. da, & Scarabeli, I. G. R. (2016). Fungitoxic activity of plant extracts and commercial products against Diplocarpon rosae. Summa Phytopathologica, 42(4), 351-356. doi: 10.1590/0100-5405/2209 DOI: https://doi.org/10.1590/0100-5405/2209

Sortino, G., Allegra, A., Passafiume, R., Gianguzzi, G., Gullo, G. & Gallotta, A. (2017). Postharvest application of sulphur dioxide fumigation to improve quality and storage ability of “Red Globe” grape cultivar during long cold storage. Chemical Engineering Transactions, 58, 403-408. doi: 10.3303/CET1758068

Tessmann, D. J., Vida, J. B., Genta, W., Roberto, S. R., & Kishino, A. Y. (2019). Doenças e seu manejo. In A. Y. Kishino, S. L. C. de Carvalho, & S. R. Roberto (Eds.), Viticultura tropical: o sistema de produção de uvas de mesa do Paraná (pp. 453-548). Londrina: IAPAR.

United States Department of Agriculture (1971). Grapes: market inspection instructions. USDA. https://www.ams.usda.gov/sites/default/files/media/Grapes_Inspection_Instructions%5B1%5D.pdf

Wang, L., Hu, W., Deng, J., Liu, X., Zhou, J., & Li, X. (2019). Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Advances, 9(50), 28987-28995. doi: 10.1039/c9ra05338g DOI: https://doi.org/10.1039/C9RA05338G

Xiao, X., Fu, Z., Zhu, Z., & Zhang, X. (2019). Improved preservation process for table grapes cleaner production in cold chain. Journal of Cleaner Production, 211, 1171-1179. doi: 10.1016/j.jclepro.2018.11.279 DOI: https://doi.org/10.1016/j.jclepro.2018.11.279

Xueuan, R., Dandan, S., Zhuo, L., & Qingjun, K. (2018). Effect of mint oil against Botrytis cinerea on table grapes and its possible mechanism of action. European Journal of Plant Pathology, 151, 321-328. doi: 10.1007/s10658-017-1375-6 DOI: https://doi.org/10.1007/s10658-017-1375-6

Yahyazadeh, M., Omidbaigi, R., Zare, R., & Taheri, H. (2008). Effects of some essential oils on mycelial growth of Penicillium digitatum Sacc. World Journal Microbiology and Biotechnology, 24, 1445-1450. doi: 10.1007/s11274-007-9636-8 DOI: https://doi.org/10.1007/s11274-007-9636-8

Youssef, K., & Roberto, S. R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table 11 grapes. Postharvest Biology and Technology, 87(1), 95-102. doi: 10.1016/j.postharvbio.2013.08.011 DOI: https://doi.org/10.1016/j.postharvbio.2013.08.011

Youssef, K., Oliveira, A. G. de, Tischer, C. A., Hussain, I., & Roberto, S. R. (2019). Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules, 141, 247-258. doi: 10.1016/j.ijbiomac.2019.08.249 DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.249

Yuan, Y., Wei, J., Xing, S., Zhang, Z., Wu, B., & Guan, J. (2022). Sulfur dioxide (SO2) accumulation in postharvest grape: the role of pedicels of four different varieties. Postharvest Biology and Technology, 190, 111953. doi: 10.1016/j.postharvbio.2022.111953 DOI: https://doi.org/10.1016/j.postharvbio.2022.111953

Zhang, M. L., Tao, N. G., & Liu, Y. J. (2009). Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). International Journal of Food Science & Technology, 44(7), 1281-1285. doi: 10.1111/j.1365-2621.2009.01947.x DOI: https://doi.org/10.1111/j.1365-2621.2009.01947.x

Zutahy, Y., Lichter, A., Kaplunov, T., & Lurie, S. (2008). Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads. Postharvest Biology and Technology, 50(1), 12-17. doi: 10.1016/j.postharvbio.2008.03.006 DOI: https://doi.org/10.1016/j.postharvbio.2008.03.006

Downloads

Published

2024-07-26

How to Cite

Aguiar, A. C. de, Oliveira , J. P. de, Gaeta , M. L., Sakai, D. M., Barbosa, B. L. M., Silva, S. do P. da, … Roberto, S. R. (2024). Essential oil from orange peel in the control of Botrytis cinerea and in the postharvest conservation of ‘Benitaka’ table grape. Semina: Ciências Agrárias, 45(4), 1109–1130. https://doi.org/10.5433/1679-0359.2024v45n4p1109

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.