Essential oil from orange peel in the control of Botrytis cinerea and in the postharvest conservation of ‘Benitaka’ table grape
DOI:
https://doi.org/10.5433/1679-0359.2024v45n4p1109Keywords:
Gray mold, Essential oil, Fruit quality, Sulfur dioxide, Vitis vinifera L.Abstract
The objective of this work was to evaluate the efficiency of essential oil from orange peel in the refrigerated conservation of the ‘Benitaka’ table grape, as well as to evaluate its in vitro effectiveness on Botrytis cinerea, the causal agent of gray mold. Grapes were harvested from a commercial field in the municipality of Cambira, Paraná, Brazil, during the 2022 and 2023 seasons. The experimental design was completely randomized, with four treatments and five replications of five bunches per plot. The treatments were: a) control; b) essential oil from orange peel at 4.0 mL of the commercial product (c.p.) L-1; c) dual phase SO2-generating pads containing 1 and 4 g of the active ingredient (a.i.) in the fast and slow phases, respectively; and d) essential oil from orange peel at 4.0 mL c.p. L-1 associated with the dual phase SO2-generating pads containing 1 and 4 g of the a.i. in the fast and slow phases, respectively. The commercial product containing 61.14 g L-1 (6% w/v) of 4-isopropenyl-1-methylcyclohexane, the source of orange essential oil, was applied by spraying it directly onto the bunches. After drying, the grape bunches were stored in a cold chamber at 1.0±1°C and 95% relative humidity. The following variables were assessed 30 and 45 days after the beginning of cold storage: the incidence of gray mold on berries, loss of bunch mass, stem browning, shattered berries, and bleaching. The minimum inhibitory concentration for the development of B. cinerea was determined, and fungal mycelia were observed using scanning electron microscopy to evaluate the in vitro efficacy of orange essential oil. The data were subjected to analysis of variance, and the means were compared using Fisher's difference test at 5% probability. The effectiveness of orange essential oil in suppressing the development of B. cinerea was demonstrated both in vivo and in vitro, making it a safe alternative for the postharvest conservation of ‘Benitaka’ table grapes.
Downloads
References
Abo-Elyousr, K. A. M., Al-Qurashi, A. D., & Almasoudi, N. M. (2021). Evaluation of the synergy between Schwanniomyces vanrijiae and propolis in the control of Penicillium digitatum on lemons. Egyptian Journal of Biological Pest Control, 31(66), 1-10. doi: 10.1186/s41938-021-00415-4 DOI: https://doi.org/10.1186/s41938-021-00415-4
Aguiar, A. C. de, Higuchi, M. T., Ribeiro, L. T. M., Leles, N. R., Bosso, B. E. C., Shimizu, G. D., Silva, M. J. R. da, Marques, V. V., Yamashita, F., Youssef, K., & Roberto, S. R. (2023). Bio-based and SO2-generating plastic liners to extend the shelf life of ‘Benitaka’ table grapes. Postharvest Biology and Technology, 197, 12217. doi: 10.1016/j.postharvbio.2022.112217. DOI: https://doi.org/10.1016/j.postharvbio.2022.112217
Ahmed, S., Roberto, S. R., Domingues, A. R., Shahab, M., Chaves, O. J., Jr., Sumida, C. H., & Souza, R. T. de. (2018). Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae, 4(4), 29. doi: 10.3390/horticulturae4040029 DOI: https://doi.org/10.3390/horticulturae4040029
Ahmed, S., Roberto, S. R., Youssef, K., Colombo, R. C., Shahab, M., Chaves, O. J., Jr., Sumida, C. H., & Souza, R. T. (2019). Postharvest preservation of the new hybrid seedless grape, ‘BRS Isis’, grown under the double-cropping a year system in a subtropical area. Agronomy, 9(10), 603 doi: 10.3390/agronomy9100603 DOI: https://doi.org/10.3390/agronomy9100603
Almasaudi, N. M., Al-Qurashi, A. D., Elsayed, M. I., & Abo-Elyousr, K. A. M. (2022). Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. Journal of Plant Pathology, 104, 317-328. doi: 10.1007/s42161-021-01008-8 DOI: https://doi.org/10.1007/s42161-021-01008-8
Antoniolli, L., & Lima, M. A. C. de. (2008). Boas práticas de fabricação e manejo na colheita e pós-colheita de uvas finas de mesa. EMBRAPA Uva e Vinho.
Arruda, M. C., Jacomino, A. P., Trevisan, M. J., Jeronimo, E. M., & Moretti, C. L. (2011). Atmosfera modificada em laranja ‘Pêra’ minimamente processada. Bragantia, 70(3), 664-671. doi: 10.1590/S0006-87052011000300023 DOI: https://doi.org/10.1590/S0006-87052011000300023
Associação Nacional dos Exportadores de Sucos Cítricos (2021). Citrus BR. https://citrusbr.com/
Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological efects of essential oils - a review. Food and Chemical Toxicology, 46(2), 446-475. doi: 10.1016/j.fct.2007.09.106 DOI: https://doi.org/10.1016/j.fct.2007.09.106
Bonett, L. P., Muller, G. M., Wessling, C. R., & Gamelo, F. P. (2012). Extrato etanólico de representantes de cinco famílias de plantas e óleo essencial da família Asteraceae sobre o fungo Colletotrichum gloeosporioides coletados de frutos de mamoeiro (Carica papaya L.). Revista Brasileira de Agroecologia, 7(3), 116-125.
Champa, H. (2015). Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). Journal of the National Science Foundation of Sri Lanka, 43(1), 3-9. DOI: https://doi.org/10.4038/jnsfsr.v43i1.7921
Chaves, O. J., Jr., Youssef, K., Koyama, R., Ahmed, S., Domingues, A. R., Mühlbeier, D. T., & Roberto, S. R. (2019). Control of gray mold on clamshell-packaged ‘Benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens, 8(4), 271. doi: 10.3390/pathogens8040271 DOI: https://doi.org/10.3390/pathogens8040271
Colombo, R. C., Souza, R. T. de, Cruz, M. A. da, Carvalho, D. U. de, Koyama, R., Bilck, A. P., & Roberto, S. R. (2018). Postharvest longevity of 'BRS Vitória' seedless grapes subjected to cold storage and acibenzolar-S-methyl application. Pesquisa Agropecuária Brasileira, 53(7), 809-814. doi: 10.1590/s0100-204x2018000700004 DOI: https://doi.org/10.1590/s0100-204x2018000700004
Crisosto, C. H. (2008). Grapes, fumigation with sulfur dioxide (SO2). WFLO Commodity Storage Manual. http://ucanr.edu/datastoreFiles/234-2689.pdf
Crisosto, C. H., & Mitchell, F. G. (2002). Postharvest handling systems: table grapes. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (pp. 357-363). Oakland.
Dantas, B. C., Higuchi, M. T., Aguiar, A. C. de, Bosso, B. E., & Roberto, S. R. (2022). Postharvest conservation of ‘BRS Nubia’ hybrid table grape subjected to field ultra-fast SO2-generating pads before packaging. Horticulturae, 8(4), 285. doi: 10.3390/horticulturae8040285 DOI: https://doi.org/10.3390/horticulturae8040285
Elad, Y., Vivier, M., & Fillinger, S. (2015). Botrytis: the good, the bad and the ugly. In S. Fillinger, Y. Elad, & M. Vivier (Eds.), Botrytis - the fungus, the pathogen and its management in agricultural systems (pp. 1-15). Cham. DOI: https://doi.org/10.1007/978-3-319-23371-0_1
Feliziani, E., Santini, M., Landi, L., & Romanazzi, G. (2013). Pre and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology, 78, 133-138. doi: 10.1016/j.postharvbio.2012.12.004 DOI: https://doi.org/10.1016/j.postharvbio.2012.12.004
Fernández-Trujillo, J. P., Obando-Ulloa, J. M., Baró, R., & Martínez, J. A. (2012). Quality of two table grape guard cultivars treated with single or dual-phase release SO2 generators. Journal of Applied. Botany and Food Quality, 82(1), 1-8.
Ferronatto, A. N., & Rossi, R. C. (2018). Extração e aplicação do óleo essencial da casca da laranja como um ingrediente natural. Estudos Tecnológicos em Engenharia, 12(2), 78-93. doi: 10.4013/ete.2018.122.05 DOI: https://doi.org/10.4013/ete.2018.122.05
Fontana, D. C., Dourado, D., Neto, Pretto, M. M., Mariotto, A. B., Caron, B. O., Kulczynski, S. M., & Schmidt, D. (2021). Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338, 108980. doi: 10.1016/j.ijfoodmicro.2020.108980 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108980
Food and Agriculture Organization (2005). Post-harvest Compendium GRAPE Post-harvest Operations. FAO.
Food and Drug Administration (2024). Generally recognized as safe: 21 CFR 182 - substances GRAS in food. FDA. https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras
Garcia, C., Rodrigues, J. D., Mazaro, S. M., Botelho, R. V., & Faria, C. M. D. R. (2019). Essential oils in the control of Botrytis cinera: influence on postharvest quality of Rubi grapes. Brazilian Journal of Food Technology, 22, e2018177. doi: 10.1590/1981-6723.17718 DOI: https://doi.org/10.1590/1981-6723.17718
Gorgatti, A., Netto, Gayet, J. P., Bleinhot, E. W., Matallo, M., Garcia, H., Garcia, A. E., Ardito, E. F. G., & Bordin, M. (1993). Uva para exportação: procedimentos de colheita e pós-colheita. EMBRAPA-SPI FRUPEX (2). https://docplayer.com.br/72807404-Ministro-da-agricultura-do-abastecimento-e-da-reforma-agraria-dejandir-dalpasquale.html
Henríquez, J. L., & Pinochet, S. (2016). Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Horticulturae, 1144, 267-272. doi: 10.17660/ActaHortic.2016.1144.39 DOI: https://doi.org/10.17660/ActaHortic.2016.1144.39
Hernández, A., Ruiz-Moyano, S., Galván, A. I., Merchán, A. V., Nevado, F. P., Aranda, E., Serradilla, M. J., Córdoba, M. de G., & Martín, A. (2021). Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biology, 125(2), 143-152. doi: 10.1016/j.funbio.2020.05.005 DOI: https://doi.org/10.1016/j.funbio.2020.05.005
Instituto Adolfo Lutz (2008). Procedimentos e determinações gerais. In O. Zenebon, N. S. Pascuet, & P. Tiglea (Orgs.), Métodos físico-químicos para análise de alimentos (4a ed., pp. 85-104). São Paulo. http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_3_19/analisedealimentosial _2008.pdf
Instituto Brasileiro de Geografia e Estatística (2023). Produção de laranja. IBGE. https://www.ibge.gov.br/explica/producao-agropecuaria/laranja/br
International Organisation of Vine and Wine (2023). World statistics. OIV. https://www.oiv.int/what-we-do/global-report?oiv
Jacob, R. G. (2017). Óleos essenciais como matéria-prima sustentável para o preparo de produtos com maior valor agregado. Revista Virtual de Química, 9(1).
Kader, A. A. (2013). Postharvest technology of horticultural crops - an overview from farm to fork. Ethiopian Journal Applied Science and Technology, (1), 1-8.
Knaak, N., & Fiuza, L. M. (2010). Potential of essential plant oils to control insects and microorganisms. Neotropical Biology and Conservation, 5(2), 120-132. doi: 10.4013/nbc.2010.52.08 DOI: https://doi.org/10.4013/nbc.2010.52.08
Lichter, A., Zutahy, Y., Kaplunov, T., & Lurie, S. (2008). Evaluation of table grape storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. Horttechnology, 18(2), 206-214. doi: 10.21273/horttech.18.2.206 DOI: https://doi.org/10.21273/HORTTECH.18.2.206
Liu, P., Li, D. L., Xu, W. C., & Fu, Y. B. (2015). Research on SO2 controlled release packaging on the preservation performance of ‘Kyoho’ grapes. Applied Mechanics and Materials, 731, 369-373. doi: 10.4028/www.scientific.net/AMM.731.369 DOI: https://doi.org/10.4028/www.scientific.net/AMM.731.369
Lurie, S., Pesis, E., Gadiyeva, O., Feygenberg, O., Ben-Arie, R., Kaplunov, T., Zutahy, Y., & Lichter, A. (2006). Modified ethanol atmosphere to control decay of table grapes during storage. Postharvest Biology and Technology, 42(3), 222-227. doi: 10.1016/j.postharvbio.2006.06.011 DOI: https://doi.org/10.1016/j.postharvbio.2006.06.011
Martínez-Romero, D., Guillén, F., Valverde, J. M., Bailén, G., Zapata, P., Serrano, M., Castillo, S., & Valero, D. (2007). Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. International Journal of Food Microbiology, 115(2), 144-148. doi: 10.1016/j.ijfoodmicro.2006.10.015 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.015
Mattiuz, B., Miguel, A. C. A., Galati, V. C., & Nachtgal, J. C. (2009). Efeito da temperatura no armazenamento de uvas apirênicas minimamente processadas. Revista Brasileira de Fruticultura, 31(1), 44-52. doi: 10.1590/S0100-29452009000100008 DOI: https://doi.org/10.1590/S0100-29452009000100008
Ministério da Agricultura, Pecuária e Abastecimento (2018). Referencial fotográfico para os produtos hortícolas. MAPA. https://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=661183307
Mühlbeier, D. T., Ribeiro, L. T., Higuchi, M. T., Khamis, Y., Chaves-Júnior, O. J., Koyama, R., & Roberto, S. R. (2021). SO2-generating pads reduce gray mold in clamshell-packaged ‘Rubi’table grapes grown under a two-cropping per year system. Semina: Ciências Agrárias, 42(3), 1069-1086. doi: 10.5433/1679-0359.2021v42n3p1069 DOI: https://doi.org/10.5433/1679-0359.2021v42n3p1069
Nelson, K. E. (1983). Retarding deterioration of table grapes with in-package sulfur dioxide generators with and without refrigeration. Acta Horticulturae, 138, 121-130. doi: 10.17660/ActaHortic.1983.138.13 DOI: https://doi.org/10.17660/ActaHortic.1983.138.13
Neves, L., Silva, V. X., Benedette, R. M., Prill, M. A. S., Vieites, R. L., & Roberto, S. R. (2008). Conservação de uvas " Crimson Seedless" e" Itália", submetidas a diferentes tipos de embalagens e dióxido de enxofre (SO2). Revista Brasileira de Fruticultura, 30(1), 65-73. doi: 10.1590/s0100-29452008000100014 DOI: https://doi.org/10.1590/S0100-29452008000100014
Ngcobo, M. E. K., Opara, U. L., & Thiart, G. D. (2011). Effects of packaging liners on cooling rate and quality attributes of table grape (cv. Regal Seedless). Packaging Technology and Science, 25(2), 73-84. doi: 10.1002/pts.961 DOI: https://doi.org/10.1002/pts.961
Nitsche, P. R., Caramori, P. H., Ricce, W. da S., & Pinto, L. F. D. (2019). Atlas climático do Estado do Paraná. IAPAR. https://www.idrparana.pr.gov.br/Pagina/Atlas-Climatico
Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). Gras, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41-52. doi: 10.1016/j.postharvbio.2016.04.017 DOI: https://doi.org/10.1016/j.postharvbio.2016.04.017
Patel, R. M., & Jasrai, Y. T. (2011). Evaluation of fungitoxic potency of medicinal plant volatile oils (VOs) against plant pathogenic fungi. Pesticide Research Journal, 23(2), 168-171.
Pedrotti, C., Marcon, A. R., Delamare, A. P. L., Echeverrigaray, S., Ribeiro, R. T. S., & Schwambach, J. (2019). Alternative control of grape rots by essential oils of two Eucalyptus species. Journal of the Science of Food and Agriculture, 99(14), 6552-6561. doi: 10.1002/jsfa.9936 DOI: https://doi.org/10.1002/jsfa.9936
Saito, S., & Xiao, C. L. (2017). Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries. Acta Horticulturae, 1180, 123-128. doi: 10.17660/actahortic.2017.1180.17 DOI: https://doi.org/10.17660/ActaHortic.2017.1180.17
Shehata, S. A., Emad, A. A., Marwa, R. A., Reda, M. M., Rwotonen, I. B., & Karima, F. A. (2020). Effect of some citrus essential oils on postharvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy, 10(10), 1466. doi: 10.3390/agronomy10101466 DOI: https://doi.org/10.3390/agronomy10101466
Silva, D. M. M. H., & Bastos, C. N. (2007). Atividade antifúngica de óleos essenciais de espécies de Piper sobre Crinipellis perniciosa, Phytophthora palmivora e Phytophthora capsici. Fitopatologia Brasileira, 32(2), 143-145. doi: 10.1590/s0100-41582007000200008 DOI: https://doi.org/10.1590/S0100-41582007000200008
Simionato, A. S., Navarro, M. O. P., Jesus, M. L. A. de, Barazetti, A. R., Silva, C. S. da, Simões, G. C., Balbi-Peña, M. I., Mello, J. C. P. de, Panagio, L. A., Almeida, R. S. C. de, Andrade, G., & Oliveira, A. G. de. (2017). The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cinerea produced by Pseudomonas aeruginosa LV strain. Frontiers in Microbiology, 8, 1102. doi: 10.3389/fmicb.2017.01102 DOI: https://doi.org/10.3389/fmicb.2017.01102
Simon, J. M., Schwan-Estrada, K. R. F., Jardinetti, V. do A., Oliva, L. S. de C., Silva, J. B. da, & Scarabeli, I. G. R. (2016). Fungitoxic activity of plant extracts and commercial products against Diplocarpon rosae. Summa Phytopathologica, 42(4), 351-356. doi: 10.1590/0100-5405/2209 DOI: https://doi.org/10.1590/0100-5405/2209
Sortino, G., Allegra, A., Passafiume, R., Gianguzzi, G., Gullo, G. & Gallotta, A. (2017). Postharvest application of sulphur dioxide fumigation to improve quality and storage ability of “Red Globe” grape cultivar during long cold storage. Chemical Engineering Transactions, 58, 403-408. doi: 10.3303/CET1758068
Tessmann, D. J., Vida, J. B., Genta, W., Roberto, S. R., & Kishino, A. Y. (2019). Doenças e seu manejo. In A. Y. Kishino, S. L. C. de Carvalho, & S. R. Roberto (Eds.), Viticultura tropical: o sistema de produção de uvas de mesa do Paraná (pp. 453-548). Londrina: IAPAR.
United States Department of Agriculture (1971). Grapes: market inspection instructions. USDA. https://www.ams.usda.gov/sites/default/files/media/Grapes_Inspection_Instructions%5B1%5D.pdf
Wang, L., Hu, W., Deng, J., Liu, X., Zhou, J., & Li, X. (2019). Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Advances, 9(50), 28987-28995. doi: 10.1039/c9ra05338g DOI: https://doi.org/10.1039/C9RA05338G
Xiao, X., Fu, Z., Zhu, Z., & Zhang, X. (2019). Improved preservation process for table grapes cleaner production in cold chain. Journal of Cleaner Production, 211, 1171-1179. doi: 10.1016/j.jclepro.2018.11.279 DOI: https://doi.org/10.1016/j.jclepro.2018.11.279
Xueuan, R., Dandan, S., Zhuo, L., & Qingjun, K. (2018). Effect of mint oil against Botrytis cinerea on table grapes and its possible mechanism of action. European Journal of Plant Pathology, 151, 321-328. doi: 10.1007/s10658-017-1375-6 DOI: https://doi.org/10.1007/s10658-017-1375-6
Yahyazadeh, M., Omidbaigi, R., Zare, R., & Taheri, H. (2008). Effects of some essential oils on mycelial growth of Penicillium digitatum Sacc. World Journal Microbiology and Biotechnology, 24, 1445-1450. doi: 10.1007/s11274-007-9636-8 DOI: https://doi.org/10.1007/s11274-007-9636-8
Youssef, K., & Roberto, S. R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table 11 grapes. Postharvest Biology and Technology, 87(1), 95-102. doi: 10.1016/j.postharvbio.2013.08.011 DOI: https://doi.org/10.1016/j.postharvbio.2013.08.011
Youssef, K., Oliveira, A. G. de, Tischer, C. A., Hussain, I., & Roberto, S. R. (2019). Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules, 141, 247-258. doi: 10.1016/j.ijbiomac.2019.08.249 DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.249
Yuan, Y., Wei, J., Xing, S., Zhang, Z., Wu, B., & Guan, J. (2022). Sulfur dioxide (SO2) accumulation in postharvest grape: the role of pedicels of four different varieties. Postharvest Biology and Technology, 190, 111953. doi: 10.1016/j.postharvbio.2022.111953 DOI: https://doi.org/10.1016/j.postharvbio.2022.111953
Zhang, M. L., Tao, N. G., & Liu, Y. J. (2009). Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). International Journal of Food Science & Technology, 44(7), 1281-1285. doi: 10.1111/j.1365-2621.2009.01947.x DOI: https://doi.org/10.1111/j.1365-2621.2009.01947.x
Zutahy, Y., Lichter, A., Kaplunov, T., & Lurie, S. (2008). Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads. Postharvest Biology and Technology, 50(1), 12-17. doi: 10.1016/j.postharvbio.2008.03.006 DOI: https://doi.org/10.1016/j.postharvbio.2008.03.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.