The Influence of porcine parity on colostrum cytokine levels and their passive transfer to piglets

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n1p427

Keywords:

Gilts, Serum, Neonatal immunity, Piglets, Passive immunity.

Abstract

The limited ability of newborn piglets to produce cytokines may influence lymphocyte development and response to antigen exposure. As a result, colostrum intake is crucial because it contains nutrients that contribute to immune system development in piglets. Our goal was to investigate the effect of sow parity on the transfer of maternal cytokines to nursing piglets. Sixty piglets from nine sows were divided into six groups: piglets from gilts or sows kept with their dams and allowed to suckle normally; piglets from gilts or sows having their dams exchanged and then allowed to suckle normally; piglets from gilts or sows isolated from their dams and bottle-fed a commercial milk replacer formula for pigs. All piglets remained in the diet groups for 24 hours after birth. Concentrations of cytokines in colostrum and serum of gilt/ sows and serum of piglets were then evaluated. The 13 evaluated cytokines had higher concentrations in colostrum and serum of sows than in gilts. Concentrations of GM-CSF, IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-18, and TNFα were higher in piglets suckling sows. Piglets that received commercial formula showed higher concentrations of the cytokines IL1-RA and IL-8 than piglets fed colostrum. This outcome can influence piglets’ development into adulthood. In short, our findings demonstrated that maternal parity influenced colostrum cytokine composition and its maternal transfer patterns.

Author Biographies

Ana Paula Bastos, Empresa Brasileira de Pesquisa Agropecuária

Researcher, Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa em Suínos e Aves, EMBRAPA/CNPSA, Concórdia, SC, Brazil.

Shaiana Maciag, Universidade Estadual do Centro-Oeste

Master Student in the Post-Graduate Program in Veterinary Sciences, Universidade Estadual do Centro-Oeste, Campus Guarapuava, UNICENTRO, Guarapuava, PR, Brazil,

Ana Livia de Carvalho Bovolato, Empresa Brasileira de Pesquisa Agropecuária

Dra, Embrapa Suínos e Aves, CNPSA, Concórdia, SC, Brazil.

References

Arend, W. R. (2002). The balance between IL-1 and IL-1Ra in disease. Cytokine & Growth Factor Reviews, 13(4-5), 323-340. doi: 10.1016/S1359-6101(02)00020-5 DOI: https://doi.org/10.1016/S1359-6101(02)00020-5

Bandrick, M., Ariza-Nieto, C., Baidoo, S. K., & Molitor, T. W. (2014). Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets. Developmental and Comparative Immunology, 43(1), 114-120. doi: 10.1016/j.dci.2013.11.005 DOI: https://doi.org/10.1016/j.dci.2013.11.005

Carr, L. E., Virmani, M. D., Rosa, F., Munblit, D., Matazel, K. S., Elolimy, A. A., & Yeruva, L. (2021). Role of Human Milk Bioactives on Infants' Gut and Immune Health. Frontiers in Immunology, 12, 604050, 1-17. doi: 10.3389/fimmu.2021.604080 DOI: https://doi.org/10.3389/fimmu.2021.604080

de Groot, J., Kruijt, L., Scholten, J. W., Boersma, W. J., Buist, W. G., Engel, B., & van Reenen, C. G. (2005). Age, gender and litter-related variation in T-lymphocyte cytokine production in young pigs. Immunology, 115(4), 495-505. doi: 10.1111/j.1365-2567.2005.02184.x DOI: https://doi.org/10.1111/j.1365-2567.2005.02184.x

Donovan, S. M., Mcneil, L. K., Jimenezflores, R., & Odle, J. (1994). Insulin-Like Growth-Factors and Insulin-Like Growth-Factor Binding-Proteins in Porcine Serum and Milk Throughout Lactation. Pediatric Research, 36(2), 159-168. doi: 10.1203/00006450-199408000-00005 DOI: https://doi.org/10.1203/00006450-199408000-00005

Forner, R., Bombassaro, G., Bellaver, F. V., Maciag, S., Fonseca, F. N., Gava, D., Lopes, L.,Groke-Marques, M., & Bastos, A. P. (2021). Distribution difference of colostrum-derived B and T cells subsets in gilts and sows. Plos One, 16(5), e0249366, 1-18. doi: 10.1371/journal.pone.0249366 DOI: https://doi.org/10.1371/journal.pone.0249366

Hlavova, K., Stepanova, H., & Faldyna, M. (2014). The phenotype and activation status of T and NK cells in porcine colostrum suggest these are central/effector memory cells. Veterinary Journal, 202(3), 477-482. doi: 10.1016/j.tvjl.2014.09.008 DOI: https://doi.org/10.1016/j.tvjl.2014.09.008

Le Dividich, J., Rooke, J. A., & Herpin, P. (2005). Nutritional and immunological importance of colostrum for the new-born pig. Journal of Agricultural Science, 143 (6), 469-485. doi: 10.1017/S0021859605005642 DOI: https://doi.org/10.1017/S0021859605005642

Maciag, S., Volpato, F., Bombassaro, G., Forner, R., Oliveira, K. P. V., Bovolato, A. L. C., & Bastos, A. P. (2022a). Effects of freezing storage on the stability of maternal cellular and humoral immune components in porcine colostrum. Veterinary Immunology and Immunopathology, 254, 110520, 1-7. doi: 10.1016/j.vetimm.2022.110520 DOI: https://doi.org/10.1016/j.vetimm.2022.110520

Maciag, S. S., Bellaver, F. V., Bombassaro, G., Haach, V., Morés, M. A. Z., Baron, L. F., Coldebella, A., Bastos, A. P. (2022b). On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Scientific Reports, 12(1), 15630, 1-16. doi: 10.1038/s41598-022-20082-1 DOI: https://doi.org/10.1038/s41598-022-20082-1

Miller, Y. J., Collins, A. M., Emery, D., Begg, D. J., Smits, R. J., & Holyoake, P. K. (2013). Piglet performance and immunity is determined by the parity of both the birth dam and the rearing dam. Animal Production Science, 53(1), 46-51. doi: 10.1071/AN12063 DOI: https://doi.org/10.1071/AN12063

Nguyen, T. V., Yuan, L. J., Azevedo, M. S. P., Jeong, K. I., Gonzalez, A. M., & Saif, L. J. (2007). Transfer of maternal cytokines to suckling piglets: In vivo and in vitro models with implications for immunomodulation of neonatal immunity. Veterinary Immunology and Immunopathology, 117(3-4), 236-248. doi: 10.1016/j.vetimm.2007.02.013 DOI: https://doi.org/10.1016/j.vetimm.2007.02.013

Prendergast, A. J., Klenerman, P., & Goulder, P. J. (2012). The impact of differential antiviral immunity in children and adults. Nature Reviews Immunology, 12(9), 636-648. doi: 10.1038/nri3277 DOI: https://doi.org/10.1038/nri3277

Sharabiani, M. T. A., Vermeulen, R., Scoccianti, C., Hosnijeh, F. S., Minelli, L., Sacerdote, C., Palli D., Krogh, V., Tumino, R., Chiodini, P., Panico, S., & Vineis, P. (2011). Immunologic profile of excessive body weight. Biomarkers, 16(3), 243-251. doi: 10.3109/1354750X.2010.547948 DOI: https://doi.org/10.3109/1354750X.2010.547948

Statistical Analysis System (2012). System for microsoft windows, release 9.4. SAS.

Wagstrom, E. A., Yoon, K. J., & Zimmerman, J. J. (2000). Immune components in porcine mammary secretions. Viral Immunol, 13(3), 383-397. doi: 10.1089/08828240050144699 DOI: https://doi.org/10.1089/08828240050144699

Wu, X. H., Liao, Z. W., Wang, K., Hua, W. B., Liu, X. Z., Song, Y., &. Yang, C. (2019). Targeting the IL-1 beta/IL-1Ra pathways for the aggregation of human islet amyloid polypeptide in an ex vivo organ culture system of the intervertebral disc. Experimental and Molecular Medicine, 51(110) 1-16. doi: 10.1038/S12276-019-0310-7 DOI: https://doi.org/10.1038/s12276-019-0310-7

Downloads

Published

2023-03-28

How to Cite

Bastos, A. P., Maciag, S., & Bovolato, A. L. de C. (2023). The Influence of porcine parity on colostrum cytokine levels and their passive transfer to piglets. Semina: Ciências Agrárias, 44(1), 427–436. https://doi.org/10.5433/1679-0359.2023v44n1p427

Issue

Section

Articles