Germination of Dypsis decaryi seeds under salt stress at two seasons

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n3p945

Keywords:

Abiotic stress, Arecaceae, KCl, NaCl, Ornamental plant

Abstract

The triangle palm (Dypsis decaryi), native to Madagascar and threatened in its habitat, presents several characteristics of ornamental interest, making it a valuable species for the international market. The main propagation method of this plant is by seed which is influenced by several factors such as sowing time and salinity. The seasonal variation of environmental factors at different sowing times can influence the germination process while saline stress can cause a decrease in germination and even seedling death, affecting seedling production. Thus, the objective of this work was to evaluate the germination behavior of Dypsis decaryi seeds in different saline concentrations of sodium chloride (NaCl) and potassium chloride (KCl) at two different seasons. The experimental design was entirely randomized. There were four repetitions, in a 2 × 2 × 5 factorial scheme, two seasons (summer and winter), two types of salts (NaCl and KCl) and four salt concentrations (25, 50, 75 and 100 mM) and no salt - control. The following variables were analyzed: germination rate, germination speed index, and mean germination time. The species proved to be tolerant to simulated salinity by NaCl and KCl during the process of seed germination, which was influenced by sowing time, salt concentrations and interaction between seasons and concentrations. There was no isolated significant effect between the types of salts, for the interaction between seasons and salts, and among the three factors evaluated.

Author Biographies

Guilherme Rodrigues Vieira, Universidade Estadual Paulista Júlio de Mesquita Filho

M.e in Agronomy (Plant Production), UNESP, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil. 

Antonio Maricélio Borges de Souza, Universidade Federal de Viçosa

Doctoral Student in the Postgraduate Program in Phytotechnics, Universidade Federal de Viçosa, UFV, Viçosa, MG, Brazil.

Thiago Souza Campos, Universidade Estadual Paulista Júlio de Mesquita Filho

Doctoral Student in the Postgraduate Program in Agronomy (Plant Production), UNESP, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil.

Kathia Fernandes Lopes Pivetta, Universidade Estadual Paulista Júlio de Mesquita Filho

Profa. Dra., Department of Agricultural Sciences, UNESP, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil.

References

Al-Qurainy, F., Khan, S., Tarroum, M., Mohammad, N., Alansi, S., Al-Shameri, A., & Gaafar, A. (2020). Comparison of salt tolerance between two potential cultivars of Phoenix dactylifera L. growing in Saudi Arabia. Pakistan Journal of Botany, 52(3), 1-9. doi: 10.30848/PJB2020-3(16) DOI: https://doi.org/10.30848/PJB2020-3(16)

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. doi: 10.1016/j.plaphy.2020.08.042 DOI: https://doi.org/10.1016/j.plaphy.2020.08.042

Balfagón, D., Zandalinas, S. I., Mittler, R., & Gómez-Cadenas, A. (2020). High temperatures modify plant responses to abiotic stress conditions. Physiologia Plantarum, 170, 335- 344. doi: 10.1111/ppl.13151 DOI: https://doi.org/10.1111/ppl.13151

Barbosa, J.C., & Maldonado Júnior, W. (2014). AgroEstat - sistema para análises estatísticas de ensaios agronômicos - versão 1.1.0.711.

Bao, F., Luz, P., Sobrinho, S., & Neves, L. (2010). Morfologia do diásporo e da plântula de Dypsis decaryi (Jum.) Beentje & J. Dransf. (Arecaceae). Revista Trópica: Ciências Agrárias e Biológicas, 4(3) , 3-9. D oi: 10.1590/S1413-70542008000500016

Batista, G. S., Mazzini-Guedes, R. B., Pivetta, K. F. L., Pritchard, H. W., & Marks, T. (2016). Seed desiccation and salinity tolerance of palm species Carpentaria acuminata, Dypsis decaryi, Phoenix canariensis, and Ptychosperma elegans. Australian Journal of Crop Science, 10(12), 1630-1634. doi: 10.21475/ajcs.2016.10.12.PNE204 DOI: https://doi.org/10.21475/ajcs.2016.10.12.PNE204

Batlla, D., & Benech-Arnold, R. L. (2015). A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Science Research, 25(2), 147-58. doi: doi.org/10.1017/S0960258514000452 DOI: https://doi.org/10.1017/S0960258514000452

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília. MAPA/ACS, 399 p.

FAO - Food and Agriculture Organization. (2021). Global map of salt-affected soils. Rome. 20 p. https://www.fao.org/3/cb7247en/cb7247en.pdf

Fos, M., Alfonso, L., Ferrer-Gallego, P. P., & Laguna, E. (2021). Effect of salinity, temperature and hypersaline conditions on the seed germination in Limonium mansanetianum an endemic and threatened Mediterranean species. Plant Biosystems, 155(1), 165-171. doi: 10.1080/11263504.2020.1722276 DOI: https://doi.org/10.1080/11263504.2020.1722276

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. doi: 10.1016/j.jplph.2015.12.011 DOI: https://doi.org/10.1016/j.jplph.2015.12.011

IUCN - International Union for Conservation of Nature. (2012). IUCN Red List of Threatened Species (ver. 2012.2).

Jacob, P. T., Siddiqui, S.A., & Rathore, M. S. (2020). Seed germination, seedling growth and seedling development associated physiochemical changes in Salicornia brachiata (Roxb.) under salinity and osmotic stress. Aquatic Botany, 166, 1-12. doi: 10.1016/j.aquabot.2020.103272 DOI: https://doi.org/10.1016/j.aquabot.2020.103272

Jaganathan, G. K. (2021). Ecological insights into the coexistence of dormancy and desiccation-sensitivity in Arecaceae species. Annals of Forest Science, 78(10), 1-14. doi: 10.1007/s13595-021-01032-9 DOI: https://doi.org/10.1007/s13595-021-01032-9

Jiménez-Alfaro, B., Hernández-González, M., Fernández-Pascual, E., Toorop, P., Frischie, S., & Gálvez-Ramírez, C. (2018). Germination ecology of winter annual grasses in Mediterranean climates: Applications for soil cover in olive groves. Agriculture, Ecosystems & Environment, 262, 29-35. doi: 10.1016/j.agee.2018.04.013 DOI: https://doi.org/10.1016/j.agee.2018.04.013

Labouriau, L. G. (1983). A germinação de sementes. Washington: Secretaria Geral da Organização dos Estados Americanos.

Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. doi: 10.1016/j.bbrc.2017.11.043 DOI: https://doi.org/10.1016/j.bbrc.2017.11.043

Lorenzi, H., Souza, H. M., Costa, J. T. M., Cerqueira, L. S. C., & Ferreira, E. (2004). Palmeiras brasileiras e exóticas cultivadas (p. 432). Instituto Plantarum.

Luz, P. B., Pimenta, R. S., Pizetta, P. U. C., Castro, A., & Pivetta, K. F. L. (2008). Germinação de sementes de Dypsis decaryi (Jum.) Beentje & J. Dransf. (Arecaceae). Ciência e Agrotecnologia, 32(5), 1461-1466. doi: 10.1590/S1413-70542008000500016 DOI: https://doi.org/10.1590/S1413-70542008000500016

Maguire, J. D. (1962). Speed of germination-aid in selection evaluation for seedling emergence and vigour. Crop Science, 2, 176-177. DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Melendo, M., & Giménez, E. (2019). Seed germination responses to salinity and temperature in Limonium supinum (Plumbaginaceae), an endemic halophyte from Iberian Peninsula. Plant Biosystems, 153(2), 257–263. doi: 10.1080/11263504.2018.1473303 DOI: https://doi.org/10.1080/11263504.2018.1473303

Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, P.C., & Bolan, N.S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 1-14. doi: 10.1016/j.jenvman.2020.111736 DOI: https://doi.org/10.1016/j.jenvman.2020.111736

Neves, S. C., Ribeiro, L. M., Cunha, I. R. G., Pimenta, M. A. S., Mercadante-Simões, M. O., & Lopes, P. S. N. (2013). Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir). Flora - Morphology, Distribution, Functional Ecology of Plants, 208(1), 68-78. doi: 10.1016/j.flora.2012.12.007 DOI: https://doi.org/10.1016/j.flora.2012.12.007

Norsazwan, M. G., Sinniah, U. R., Puteh, A. B., Namasivayam, P., Mohaimi, M., & Aminuddin, I. A. (2020). Temperature fluctuation improves oil palm (Elaeis guineensis) dura × pisifera seed germination. Seed Science and Technology, 48(1), 49-55. doi: 10.15258/sst.2020.48.1.07 DOI: https://doi.org/10.15258/sst.2020.48.1.07

Rodrigues-Junior, A. G., Oliveira, T. G. S., Souza, P. P., & Ribeiro, L. M. (2016). Temperature effects on Acrocomia aculeata seeds provide insights into overcoming dormancy in neotropical savanna palms. Flora, 223, 30-37. doi: 10.1016/j.flora.2016.04.011 DOI: https://doi.org/10.1016/j.flora.2016.04.011

Rodrigues, J. K., Mendonça, M. S., & Gentil, D. F. O. (2014). Efeito da temperatura, extração e embebição de sementes na germinação de Bactris maraja Mart. (Arecaceae). Revista Árvore, 38(5), 857-865. doi: 10.1590/S0100-67622014000500010 DOI: https://doi.org/10.1590/S0100-67622014000500010

Saatkamp, A., Cochrane, A., Commander, L., Guja, L. K., Jimenez-Alfaro, B., Larson, J., Nicotra, A., Poschlod, P., Silveira, F. A. O., Cross, A. T., Dalziell, E. L., Dickie, J., Erickson, T. E., Fidelis, A., Fuchs, A., Golos, P. J., Hope, M., Lewandrowski, W., Merritt, D. J., … Walck, J. L. (2019). A research agenda for seed-trait functional ecology. New Phytologist, 221(4), 1764-1775. doi: doi.org/10.1111/nph.15502 DOI: https://doi.org/10.1111/nph.15502

Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., Gómez, C., Mattson, N., Nasim, W., & García-Sánchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 1-34. doi: 10.3390/agronomy10070938 DOI: https://doi.org/10.3390/agronomy10070938

Sharavdorj, K., Jang, Y., Byambadorj, S. O., & Cho, J. W. (2021). Understanding seed germination of forage crops under various salinity and temperature stress. Journal of Crop Science and Biotechnology, 24, 545–554. doi: 10.1007/s12892-021-00101-9 DOI: https://doi.org/10.1007/s12892-021-00101-9

Srivastava, P., Wu, Q. S., & Giri, B. (2019) Salinity: An Overview. In B. Giri, & A. Varma. (Eds.), Microorganisms in Saline Environments: Strategies and Functions (Cap. 1, pp. 3-18). Springer Nature. doi: 10.1007/978-3-030-18975-4_1 DOI: https://doi.org/10.1007/978-3-030-18975-4_1

Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71(1), 403-433. doi: 10.1146/annurev-arplant-050718-100005 DOI: https://doi.org/10.1146/annurev-arplant-050718-100005

Downloads

Published

2023-07-05

How to Cite

Vieira, G. R., Souza, A. M. B. de, Campos, T. S., & Pivetta, K. F. L. (2023). Germination of Dypsis decaryi seeds under salt stress at two seasons. Semina: Ciências Agrárias, 44(3), 945–956. https://doi.org/10.5433/1679-0359.2023v44n3p945

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.