In vitro control of phytopathogenic fungi and damping-off of tomato by Bacillus velezensis LABIM40 (CMRP 4489)

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n3p1077

Keywords:

Biological control, Plant-growth promoting rhizobacteria, Solanum lycopersicum.

Abstract

The in vitro antagonistic activity of Bacillus velezensis LABIM40 (strain CMRP 4489) was assessed against Alternaria linariae, Botryotinia squamosa, Colletotrichum lindemuthianum, Gibberella zeae, and Rhizoctonia solani. An experiment was conducted using treated seeds under growth chamber conditions to determine the impact of various LABIM40 formulations on tomato seedling growth and the biocontrol of damping-off caused by R. solani. The treatments included the use of LABIM40 cell suspension, LABIM40 cell-free supernatant (CFS), 10 times concentrated CFS (10× CFS), commercial products based on Bacillus amyloliquefaciens (CP_1) and Bacillus subtilis (CP_2), and water. The effects of these products were assessed on tomato seedlings grown in sterile substrate or substrate inoculated with R. solani. In a dual culture test, B. velezensis LABIM40 inhibited the mycelial growth of the aforementioned fungal pathogens by 46.6%, 67.4%, 64.7%, 49.0%, and 54.4%, respectively. The minimum inhibitory concentration against each fungus was determined using varying concentrations of CFS in potato dextrose agar medium, followed by a regression analysis of mycelial growth inhibition. Except for A. linariae, the logarithmic model provided the best fit in all cases. Tomato seedlings from seeds treated with 10× CFS in inoculated substrate exhibited a survival rate 57% higher than that exhibited by the control treatment. However, no growth promotion was observed in tomato plants from seeds treated with LABIM40 cells or its CFS metabolites. In summary, these findings highlight the antagonistic activity of B. velezensis LABIM40 against A. linariae, B. squamosa, C. lindemuthianum, G. zeae, and R. solani, as demonstrated by dual culture and CFS diffusion tests. This suggests its potential as a biocontrol agent for damping-off in tomatoes.

Downloads

Download data is not yet available.

Author Biographies

Paula Pinheiro Sanches de Almeida, Universidade Estadual de Londrina

Doctoral Student in the Postgraduate Program in Agronomy, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Julia Pezarini Baptista, Universidade Estadual de Londrina

M.e in Microbiology, UEL, Londrina, PR, Brazil.

Allan Yukio Higashi, Universidade Estadual de Londrina

M.e in Agronomy, UEL, Londrina, PR, Brazil.

Gustavo Manoel Teixeira, Universidade Estadual de Londrina

Doctoral Student in the Postgraduate Program in Microbiology, UEL, Londrina, PR, Brazil.

Luiz Henrique Campos de Almeida, Universidade Estadual de Londrina

Prof. Dr., Department of Agronomy, UEL, Londrina, PR, Brazil.

Admilton Gonçalves de Oliveira Junior, Universidade Estadual de Londrina

Prof Dr., Department of Microbiology, UEL, Londrina, PR, Brazil.

Maria Isabel Balbi-Peña, Universidade Estadual de Londrina

Profa. Dra., Department of Agronomy, UEL, Londrina, PR, Brazil.

References

Abdelnasser, S. M., Yahya, S. M. M., Mohamed, W. F., Asker, M. M. S., Shady, H. M. A., Mahmoud, M. G., & Gadallah, M. (2017). Antitumor exopolysaccharides derived from novel marine Bacillus: isolation, characterization aspect and biological activity. Asian Pacific Journal of Cancer Prevention, 18(7), 1847-1854. doi: 10.22034/APJCP.2017.18.7.1847

Ansary, W. R., Prince, F. R. K., Haque, E., Sultana, F., West, H. M., Rahman, M., Mondol, A. M., Akanda, A. M., Rahman, M., Clarke, M. I., & Islam, T. (2018). Endophytic Bacillus spp. from medicinal plants inhibit mycelial growth of Sclerotinia sclerotiorum and promote plant growth. Zeitschrift für Naturforschung: A Journal of Biosciences, 25;73(5-6), 247-256. doi: 10.1515/znc-2018-0002 DOI: https://doi.org/10.1515/znc-2018-0002

Ayala, F. R., Bauman, C., Cogliati, S., Leñini, C., Bartolini, M., & Grau, R. (2017). Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microbial Cell, 4(4), 133-136. doi: 10.15698/mic2017.04.569 DOI: https://doi.org/10.15698/mic2017.04.569

Baptista, J. P., Sanches, P. P., Teixeira, G. M., Morey, A. T., Tavares, E. R., Yamada-Ogatta, S. F., Rocha, S. P. D. da, Hungria, M., Ribeiro, R. A., Balbi-Peña, M. I., Chideroli, R. T., Pereira, U. de P., & Oliveira, A. G. de. (2018). Complete genome sequence of Bacillus velezensis LABIM40, an effective antagonist of fungal plant pathogens. Genome Announcements, 6(25), e00595-18. doi: 10.1128/genomeA .00595-18 DOI: https://doi.org/10.1128/genomeA.00595-18

Baptista, J. P., Teixeira, G. M., Jesus, M. L. A. de, Bertê, R., Higashi, A., Mosela, M., Silva, D. V. da, Oliveira, J. P. de, Sanches, D. S., Brancher, J. D., Balbi-Peña, M. I., Pereira, U, P., & Oliveira, A. G. de. (2022). Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP4489. Scientific Reports, 12,17401. doi: 10.1038/s41598-022-22380-0 DOI: https://doi.org/10.1038/s41598-022-22380-0

Calvo, H., Mendiara, I., Arias, E., Blanco, D. & Venturini, M. E. (2019). The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiology, 82, 62-69. doi: 10.1016/j.fm.2019.01.010 DOI: https://doi.org/10.1016/j.fm.2019.01.010

Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., Xiong, H., Helmann, J. D., & Cai, Y. (2018). Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific Reports, 8(4360), 1-14. doi: 10.1038/s41598-018-22782-z DOI: https://doi.org/10.1038/s41598-018-22782-z

Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218, 41-48. doi: 10.1016/j.micres.2018.10.002 DOI: https://doi.org/10.1016/j.micres.2018.10.002

Chen, Z., Zhao, L., Chen, W., Dong, Y., Yang, C., Li, C., Xu, H., Gao, X., Chen, R., Li, L., & Xu, Z. (2020). Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae. Biotechnology & Biotechnological Equipment, 34(1), 714-724. doi: 10.1080/13102818.2020.1803766 DOI: https://doi.org/10.1080/13102818.2020.1803766

Dhouib, H., Zouari, I., Abdallah, D. B., Belbahri, L., Taktak, W., Triki, M. A. & Tounsi, S. (2019). Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biological Control, 139(104092), 1-11. doi: 10.1016/j.biocontrol.2019.104092 DOI: https://doi.org/10.1016/j.biocontrol.2019.104092

Food and Agriculture Organization of the United Nations (2022). Faostat. http:// faostat.fao.org

Huang, L., Li, Q.-C., Hou, Y., Li, G.-Q., Yang, J.-Y., Li, D.-W., & Ye, J.-R. (2017). Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicas. Biocontrol Science and Technology, 27(5), 636-653. doi: 10.1080/09583157.2017.1319910 DOI: https://doi.org/10.1080/09583157.2017.1319910

Jaivel, N., Ramasamy, R., Uthandi, S., & Ponnusamy, M. (2019). Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1. Microbial Pathogenesis, 128, 374-380. doi: 10.1016/j.micpath.2019.01.037 DOI: https://doi.org/10.1016/j.micpath.2019.01.037

Lanna-Filho, R.., Souza, R. M., & Alves, E. (2017). Induced resistance in tomato plants promoted by two endophytic bacilli against bacterial speck. Tropical Plant Pathology, 42, 96-108. doi: 10.1007/s40858-01 7-0141-9 DOI: https://doi.org/10.1007/s40858-017-0141-9

National Committee for Clinical Laboratory (2003). Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard Eighth. NCCLS document M2-A8, Pennsylvania, USA: Edition Wayne, 2003.document M2-A8, Pennsylvania, USA: Edition Wayne.

Palazzini, J. M., Dunlap, C. A., Bowman, M. J. & Chulze, S. N. (2016). Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiological Research, 192, 30-36. doi: 10.1016/j.micres.2016.06.002 DOI: https://doi.org/10.1016/j.micres.2016.06.002

Parikh, L., Eskelson, M. J., & Adesemoye, A. O. (2018). Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Archives of Phytopathology and Plant Protection, 51(3-4), 156-169. doi: 10.1080/03235408.2018.1441098 DOI: https://doi.org/10.1080/03235408.2018.1441098

Paz, I. C. P., Santin, R. de C. M., Guimarães, A. M., Rosa, O. P. P. da, Quecine, M. C., Silva, M. de C. P., Azevedo, J. L., & Matsumura, A. T. S. (2018). Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp. Microbial Pathogenesis, 121, 106-109. doi: 10.1016/j.micpath.2018.05.026 DOI: https://doi.org/10.1016/j.micpath.2018.05.026

Peng, D., Li, S., Wang, J., Chen, C., & Zhou, M. (2013). Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ-18 and jinggangmycin. Pest Management Science, 70, 258-263. doi: 10.1002/ps.3551 DOI: https://doi.org/10.1002/ps.3551

Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C. & Baek, K.H. (2019). Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules. 24(6), 1046, 1-13. doi: 10.3390/molecules24061046 DOI: https://doi.org/10.3390/molecules24061046

Ribeiro, V. P., Marriel, I. E., Sousa, S. M. de, Lana, U. G. de P., Mattos, B. B., Oliveira, C. A. de, & Gomes, E. A. (2018). Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Environmental Microbiology, 425, 1-7. doi: 10.1016/j.bjm.2018.06.005 DOI: https://doi.org/10.1016/j.bjm.2018.06.005

Sen, A. & Batra, A. (2012). Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. International Journal of Current Pharmaceutical Research, 4(2), 67-73.

Sistema de Agrotóxicos Fitossanitários. (2022). Sistema de agrotóxicos fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons

Suthin Raj, T., Muthukumar, A., Renganathan, P., & Ann Suji, H. (2020). Efficacy of seaweed and seawater associated Bacillus velezensis against sheath blight of rice caused by Rhizoctonia solani Kuhn. Plant Archives, 20(1), 3727-3731.

Torres, M., Llamas, I., Torres, B., Toral, L., Sampedro, I. &, Béjar, V. (2020). Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Applied Soil Ecology, 150, (103453), 1-8. doi: 10.1016/j.apsoil.2019.103453 DOI: https://doi.org/10.1016/j.apsoil.2019.103453

Vasconcelos, A. C. M. (2017). Modelagem determinística do crescimento de Bacillus cereus em função do pH e temperatura. Dissertação de mestrado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.

Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., Liu, K., & Ding, Y. (2020). Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides. Frontiers in Microbiology, 10(2889), 1-16. doi: 10.3389/fmicb.2019.02889 DOI: https://doi.org/10.3389/fmicb.2019.02889

Zachow, C., Grosch, R., & Berg, G. (2011). Impact of biotic and abiotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani. Applied Soil Ecology, 48(2), 193-200. doi: 10.1016/j.apsoil.2011.03.006 DOI: https://doi.org/10.1016/j.apsoil.2011.03.006

Zohora, U. S., Ano, T., & Rahman, M. S. (2016). Biocontrol of Rhizoctonia solani K1 by Iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Advances in Microbiology, 6, 424-431. doi: 10.4236/aim.2016.66042 DOI: https://doi.org/10.4236/aim.2016.66042

Downloads

Published

2023-08-22

How to Cite

Almeida, P. P. S. de, Baptista, J. P., Higashi, A. Y., Teixeira, G. M., Almeida, L. H. C. de, Oliveira Junior, A. G. de, & Balbi-Peña, M. I. (2023). In vitro control of phytopathogenic fungi and damping-off of tomato by Bacillus velezensis LABIM40 (CMRP 4489). Semina: Ciências Agrárias, 44(3), 1077–1096. https://doi.org/10.5433/1679-0359.2023v44n3p1077

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.