Silicon increases the production and quality of cherry tomato under different electrical conductivity levels

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n3p1297

Keywords:

Solanum lycopersicum var. cerasiforme, Biostimulant, Beneficial element.

Abstract

The addition of high nutrient concentrations to irrigation water increases its electrical conductivity by contributing to its salinity, resulting in crop yield losses. However, in cases where stress conditions are not observed, silicon can act as a biostimulant and promote vegetative growth, fruit quality, and fruit production. From this perspective, this study aimed to evaluate the effect of fertigation with different electrical conductivity levels associated with potassium silicate on the production parameters of cherry tomatoes grown in a protected environment. The study was conducted in Bom Jesus - PI, and arranged in a randomized block design with four replications and a 6 x 2 factorial corresponding to six electrical conductivity levels (1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 dS m-1) in the absence and presence of silicon (2 mmol L-1). The variables analyzed were the number of fruits per plant, fresh and dry fruit biomass, dry biomass of stem, leaves, bunches, root, shoot, and whole plant; and chemical quality of fruits (pH, total soluble solids, titratable acidity, and the ratio of total soluble solids to titratable acidity. Silicon supplementation increased the root and shoot dry masses and improved fruits quality, thus increasing cherry tomato production (Sweet Heaven hybrid) regardless of the electrical conductivity levels.

Downloads

Download data is not yet available.

Author Biographies

Rejane Meyson Vieira de Sousa, Universidade Federal do Piauí

Student of Master's Course of Postgraduate Program in Agricultural Sciences, Agronomy Department, Universidade Federal do Piauí, UFPI, Bom Jesus, PI, Brazil.

Aldelan Arnaldo Silva, Universidade Federal do Piauí

Student of Master's Course of Postgraduate Program in Agricultural Sciences, Agronomy Department, Universidade Federal do Piauí, UFPI, Bom Jesus, PI, Brazil.

Giselle Mendes Fonseca, Universidade Federal do Piauí

Student of Undergraduate Course in Agronomic Engineering, Agronomy Department, UFPI, Bom Jesus, PI, Brazil.

Jenilton Gomes da Cunha, Universidade Federal do Piauí

Student of Doctoral Course of Postgraduate Program in Agricultural Sciences, Agronomy Department, UFPI, Bom Jesus, PI, Brazil.

Julian Junio de Jesus Lacerda, Universidade Federal do Piauí

Profa Dra. Graduate Program in Agricultural Sciences, Agronomy Department, UFPI, Bom Jesus, PI, Brazil.

Wilon Pinheiro Guimarães, Empresa Paranaense de Assistência Técnica e Extensão Rural

Researcher, Institute of Technical Assistance and Rural Extension of the State of Piauí, Empresa Paranaense de Assistência Técnica e Extensão Rural, EMATER, Teresina, PI, Brazil.

Gabriel Barbosa da Silva Júnior, Universidade Federal do Piauí

Prof. Dr., Graduate Program in Agricultural Sciences, Agronomy Department, UFPI, Bom Jesus, PI, Brazil.

Regiana dos Santos Moura, Universidade Federal do Recôncavo da Bahia

Profa Dra, Graduate Program in Agricultural Engineering, Universidade Federal do Recôncavo da Bahia, UFRB, Cruz das Almas, BA, Brazil.

Everaldo Moreira da Silva, Universidade Federal do Piauí

Prof. Dr., Graduate Program in Agricultural Sciences, Agronomy Department, UFPI, Bom Jesus, PI, Brazil.

References

Abdelaal, K. A., Mazrou, Y. S., & Hafez, Y. M. (2020). Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants, 9(6), 733. doi: 10.3390/plants9060733

Alam, M. S., Tester, M., Fiene, G., & Mousa, M. A. A. (2021). Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants, 10(4), 712. doi: 10.3390/plants10040712

AL-Garni, S. M. S., Khan, M. M. A., & Bahieldin, A. (2019). Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in Coriandrum sativum. Journal of Plant Interactions, 14(1), 386-396. doi: 10.1080/17429145.2019.1641635

AL-Huqail, A. A., Alqarawi, A. A., Hashem, A., Malik, J. A., & ABD_Allah, E. F. (2017). Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi Journal of Biological Sciences, 26(7), 1856-1864. doi: 10.1016/j.sjbs.2017.11.049

Alvarenga, M. A. R (2013). Tomate: produção em campo, casa de vegetação e hidroponia. Lavras: Editora Universitária de Lavras.

Amjad, M., Ameen, N., Murtaza, B., Imran, M., Shahid, M., Abbas, G., Naeem, M. A., Jacobsen, S. E. (2019). Comparative physiological and biochemical evaluation of salt and nickel tolerance mechanisms in two contrasting tomato genotypes. Physiologia Plantarum, 168(1), 27-37. doi: 10.1111/ppl.12930

Barreto, R. F., Schiavon, A. A., Jr., Maggio, M. A., & Mello Prado, R. (2017). Silicon alleviates ammonium toxicity in cauliflower and in broccoli. Scientia Horticulturae, 225(11), 743-750. doi: 10.1016/j.scienta. 2017.08.014

Bezerra, M. A. F., Pereira, W. E., Bezerra, F. T. C., Cavalcante, L. F., & Silva Medeiros, S. A. (2019). Nitrogen as a mitigator of salt stress in yellow passion fruit seedlingss. Semina: Ciências Agrárias, 40(2), 611-622. doi: 10.5433/1679-0359.2019v40n2p611

Boari, F., Donadio, A., Pace, B., Schiattone, M. I., & Cantore, V. (2016). Kaolin improves salinity tolerance, water use efficiency and quality of tomato. Agricultural Water Management, 167(3), 29-37. doi: 10.1016/ j.agwat.2015.12.021

Bonachela, A. S., Fernández, M. D., Cabrera, F. J., & Granados, M. R. (2018). Soil spatio-temporal distribution of water, salts and nutrients in greenhouse, drip-irrigated tomato crops using lysimetry and dielectric methods. Agricultural Water Management, 203(4), 151-161. doi: 10.1016/j.agwat.2018.03.009

Braga, F. T., Nunes, C. F., Favero, A. C., Pasqual, M., Carvalho, J. G. D., & Castro, E. M. D. (2009). Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. Pesquisa Agropecuária Brasileira, 44(2), 128-132. doi: 10.1590/S0100-204X2009000200003

Campos, C. N. S., Silva, G. B. D., Jr., Prado, R. D. M., David, C. H. O. D., Souza, J. P. D.,Jr., & Teodoro, P. E. (2020). Silicon mitigates ammonium toxicity in plants. Agronomy Journal, 11(2), 635-647. doi: 10.10 02/agj2.20069

Campos, C. N. S., Mello Prado, R., Caione, G., Lima, A. J., Neto, & Mingotte, F. A. L. C. (2016). Silicon and excess ammonium and nitrate in cucumber plants. African Journal of Agricultural, 11(4), 276-283. doi: 10.5897/ajar2015.10221. ISSN 1991-637X

Cao, B. L., Ma, Q., Zhao, Q., Wang, L., & Xu, K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Scientia Horticulturae, 194(10), 53-62. doi: 10.1016/j.scienta.2015.07.037

Carneiro, J. D. O., Souza, M. A. D. A. D., Rodrigues, Y. J. D. M., & Mapeli, A. (2015). Efeito da temperatura e do uso de embalagem na conservação pós-colheita de frutos de cagaita (Eugenia dysenterica DC.). Revista Brasileira de Fruticultura, 37(3), 568-577. doi: 10.1590/0100-2945-157/14

Cliff, M. A., Li, J. B., Toivonen, P. M., & Ehret, D. L. (2012). Effects of nutrient solution electrical conductivity on the compositional and sensory characteristics of greenhouse tomato fruit. Postharvest Biology and Technology, 74(12), 132-40. doi: 10.1016/j.postharvbio.2011.12.007

Costan, A., Stamatakis, A., Chrysargyris, A., Petropoulos, S. A., & Tzortzakis, N. (2020). Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf life of fruit produced hydropoiically. Journal of the Science of Food and Agiiculture, 100(2), 732-743. doi: 10.1002/ jsfa.10076

Dias, N. S., Lira, R. B., Brito, R. F., Sousa, O. N. Neto, Ferreira, M. F. Neto, & Oliveira, A. M. (2010). Produção de melão rendilhado em sistema hidropônico com rejeito da dessalinização de água em solução nutritiva. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(7), 755-761. doi: 10.1590/S1415-4366201000070001.1

Food and Agriculture Organization of the United Nations (2022). Worldwide tomato production. Retrieved from https://www.fao.org/faostat/en/#data/QCL

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001

Figueiredo, F. C., Botrel, P. P., Teixeira, C. P., Petrazzini, L. L., Locarno, M., & Carvalho, J. G. D. (2010). Pulverização foliar e fertirrigação com silício nos atributos físico-químicos de qualidade e índices de coloração do morango. Ciência Agrotecnica, 34(5), 1306-1311. doi: 10.1590/S1413-705420100005000 32

Galati, V. C., Guimarães, J. E. R., Marques, K. M., Fernandes, J. D. R., Cecílio, A. B., Fº., & Mattiuz, B. H. (2015). Silicon, in hydroponics, in postharvest American Lucy Brown lettuce minimally processed. Ciência Rural, 45(11), 1932-1938. doi: 10.1590/0103-8478cr20140334

Instituto Adolfo Lutz (1985). Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos (3a ed.). São Paulo: Instituto Adolfo Lutz.

Khan, A, Latif Khan, A., Muneer, S., Kim, Y. H., & AL-Rawahi, A. (2019). Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in Plant Science, 10(11), 1429. doi: 10.3389/fpls. 2019.01429

Khorasaninejad, S., & Hemmati, K. (2020). Effects of silicon on some phytochemical traits of purple coneflower (Echinacea purpurea L.) under salinity. Scientia Horticulturae, 264(4), 108954. doi: 10.1016/ j.scienta.2019.108954

Kobra, M., Emam, Y., Ashraf, M., & Arvin, M. J. (2019). Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop and Pasture Science, 70(1), 36-43. doi: 10.1071/CP18213

Kraska, T., Kleinschmidt, B., Weinand, J., & Pude, R. (2018). Cascading use of Miscanthus as growing substrate in soilless cultivation of vegetables (tomatoes, cucumbers) and subsequent direct combustion. Scientia Horticulturae, 235(5), 205-213. doi: 10.1016/j.scienta.2017.11.032

Kurdali, F., AL-Chammaa, M., & AL-Ain, F. (2018). Growth and N2-fixation in saline and/or water stressed Sesbania aculeata plants in response to silicon application. Silicon, 11(2), 781-788. doi: 10.1007/s12633-018-9884-2

Leogrande, R., Lopedota, O., Montemurro, F., Vitti, C., & Ventrella, D. (2012). Effects of irrigation regime and salinity on soil characteristics and yield of tomato. Italian Journal of Agronomy, 7(1), e8-e8. doi: 10. 4081/ija.2012.e8

Leong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W., & Ling, T. C. (2017). Natural red pigments from plants and their health benefits-a review. Food Reviews International, 34(5), 463-482. doi: 10.1080/87559129. 2017.1326935

Li, Z., Song, Z., Yan, Z., Hao, Q., Song, A., Liu, L., Yang, X., Xia, S., & Liang, Y. (2018). Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agronomy for Sustainable Development, 38(26), 1-19. doi: 10.1007/s13593-018-0496-4

Lima, G. S., Silva, J. B., Anjos Soares, L. A., Gheyi, H. R., Nobre, R. G., & Pádua Souza, L. (2020). Physiological indices and phytomass partition in precocious dwarf cashew clones irrigated with saline waters. Comunicata Scientiae, 11(2), e3196-e3196.

Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. doi: 10.1016/j.tplants.2006.06.007

Marodin, J. C. (2011). Produtividade, qualidade físico-química e conservação pós-colheita de frutos de tomateiro em função de fontes e doses de silício. Dissertação de mestrado, Universidade Estadual do Centro-Oeste, Gurapuava, PR, Brasil.

Marschner, H. (1995). Mineral nutrition of higher plants. San Diego, CA: Academic Press International.

Medeiros, P. R. F., Duarte, S. N., Uyeda, C. A., Silva, E. F. F., & Medeiros, J. D. (2012). Tolerância da cultura do tomate a salinidade do solo em ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(1), 51-55. doi: 10.1590/S1415-43662012000100007

Medeiros, R. M., Alcântara Silva, V. M., Silva Melo, V. da, Menezes, H. E. A., & Menezes, H. E. A. (2016). Diagnóstico e tendência da precipitação pluvial em Bom Jesus - Piauí, Brasil. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 11(3), 115-121. doi: 10.18378/rvads.v11i3.3992

Mitani, N., & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56(414), 1255-1261.

Moraes, C. A. G. (1997). Hidroponia: como cultivar tomates em sistema NFT (técnica de fluxo laminar de nutrientes). Jundiaí: DISK.

Nascimento, A. R., Soares, M. S., Jr., Caliari, M., Fernandes, P. M., Rodrigues, J. P., & Carvalho, W. T. (2013). Qualidade de tomates de mesa cultivados em sistema orgânico e convencional no estado de Goiás. Horticultura Brasileira, 31(4), 628-635. doi: 10.1590/S0102-05362013000400020

Pailles, Y., Awlia, M., Julkowska, M., Passone, L., Zemmouri, K., Negrão, S.,…Tester, M. (2019). Running title: Salinity responses in Galapagos tomatoes. Bio Rxiv, 20, 642876. doi: 10.1101/642876

Rahneshan, Z., Fatemeh, N., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1), 73-82. doi: 10.1080/17429145.2018.1424355

Rehman, S., Abbas, G., Shahid, M., Saqib, M., Farooq, A. B. U., Hussain, M., Murtaza, B., Amjad, M., Asif Naeem, M., & Farooq, A. (2019). Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: implications for phytoremediation. Ecotoxicology and Environmental Safety, 171(4), 146-153. doi: 10.1016/j.ecoenv.2018.12.077

Rios, J. J., Martínez-Ballesta, M. C., Ruiz, J. M., Blasco, B., & Carvajal, M. (2017). Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Frontiers in Plant Science, 8(6), 948. doi: 10.3389/fpls.2017.00948

Rodrigues, F. D. A., Oliveira, L. D., Korndorfer, A. P., & Korndorfer, G. H. (2011). Silício: um elemento benéfico e importante para as plantas. Informações Agronomicas, 134(1), 14-20. doi: Recuperado de http://www.ipni.net/publication/iabrasil.nsf/0/66D3EE234A3DA5CD83257A8F005E858A/$FILE/Page14-20-134.pdf

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., UL Hussa, M., Sarwar, M. I. (2019). A review: impact of salinity on plant growth. Natural Sciences, 17(1), 34-40. doi: 10.7537/marsnsj170119. 06

Savvas, D., & Natatsi, G. (2015). Biostimulant activity of silicon in horticulture. Review. Scientia Horticulturae, 196(30), 66- 81. doi: 10.1016/j.scienta.2015.09.010

Shamshiri, R. (2017). Measuring optimality degrees of microclimate parameters in protected cultivation of tomato under tropical climate condition. Measurement, 106(8), 236-244. doi: 10.1016/j.measurement. 2017.02.028

Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Audi Journal of Biological Sciences, 22(2), 123-131. doi: 10.1016/j.sjbs.2014.12.001

Siddiqui, H., Yusuf, M., Faraz, A., Faizan, M., Sami, F., & Hayat, S. (2018). 24 - Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South. African Journal of Botany, 118(1), 120-128. doi: 10.1016/j.sajb.2018.07.009

Silva, G. B. D., Jr., Prado, R. M., Campos, C., Agostinho, F. B., Silva, S. L., Santos, L. C., & González, L. C. (2019). Silicon mitigates ammonium toxicity in yellow passionfruit seedlings. Chilean Journal of Agricultural Research, 79(3), 425-434. doi: 10.4067/S0718-58392019000300425

Silva, D. R. G., & Lopes, A. S. (2011). Princípios básicos para formulação e mistura de fertilizantes. (Boletim Técnico). Lavras: Universidade Federal de Lavras. Recuperado de http://livraria.editora.ufla.br/upload/ boletim/tecnico/boletim-tecnico-89.pdf

Silva, V. M. A., Medeiros, R. M., Santos, D. C., & Gomes, M. F., F. (2013). Variabilidade pluviométrica entre regimes diferenciados de precipitação no estado do Piauí. Revista Brasileira de Geografia Física, 6(5), 1463-1475. doi: 10.26848/rbgf.v6.5.p1463-1475

Tesfay, S. Z., Bertling, I., & Bower, J. P. (2011). Effects of postharvest potassium silicate application on phenolics and other anti-oxidant systems aligned to avocado fruit quality. Postharvest Biology and Technology, 60(2), 92-99. doi: 10.1016/j.postharvbio.2010.12.011

Toresano-Sánchez, F., Valverde-García, A., & Camacho-Ferre, F. (2012). Effect of the application of silicon hydroxide on yield and quality of cherry tomato. Journal of Plant Nutrition, 35(4), 567-590. doi: 10.108 0/01904167.2012.644375

Yan, G., Fan, X., Peng, M., Yin, C., Xiao, Z., & Liang, Y. (2020). Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Frontiers in Plant Science, 11(3), 260. doi: 10.3389/fpls.2020.00260

Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472. doi: 10.1007/s13593-013-0194-1

Zushi, K., & Matsuzoe, N. (2011). Utilization of correlation network analysis to identify differences in sensory attributes and organoleptic compositions of tomato cultivars grown under salt stress. Scientia Horticulturae, 129(1), 18-26. doi: 10.1016/j.scienta.2011.02.011

Downloads

Published

2022-03-25

How to Cite

Sousa, R. M. V. de, Silva, A. A., Fonseca, G. M., Cunha, J. G. da, Lacerda, J. J. de J., Guimarães, W. P., … Silva, E. M. da. (2022). Silicon increases the production and quality of cherry tomato under different electrical conductivity levels. Semina: Ciências Agrárias, 43(3), 1297–1316. https://doi.org/10.5433/1679-0359.2022v43n3p1297

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.