In vitro ruminal fermentation kinetics of diets with crambe cake protein replacing soybean meal protein by gas production technique
DOI:
https://doi.org/10.5433/1679-0359.2021v42n6p3399Keywords:
Biodiesel, Byproduct, Carbohydrate fraction, In vitro degradation, Protein fraction.Abstract
The objective of this study was to evaluate ingredients and diets containing increasing levels of crambe cake protein replacing soybean meal protein, with in vitro ruminal fermentation parameters using a gas production technique. Diets were formulated for feedlot lambs and contained different levels of crambe cake protein (0, 250, 500, 750, and 1000 g kg-1) replacing soybean meal protein. Corn silage was used as roughage. Carbohydrate digestion rates were estimated using the in vitro gas production technique and the cumulative gas production kinetics were analyzed using the bicompartmental logistic model. The parameters values of ruminal degradation kinetics were generated using the R statistical program with the Gauss-Newton algorithm and then subjected to analysis of variance and regression (when necessary) according to a completely randomized experimental design with five treatments and five replications. Upon carbohydrate fractionation of ingredients and experimental diets, it was observed that corn grain and corn silage presented the highest levels of total carbohydrates (TC), with values of 128.3 and 464.8 g kg-1 dry matter (DM) in fraction B2, respectively. Lower TC content was found for soybean meal and crambe cake (CC). There was a predominance of fractions A + B1 in the ingredients and experimental diets. The B2 fraction decreased in the diets with the inclusion of the CC protein, and CC presented the highest C fraction. Protein fractionation (g kg-1 DM and g kg-1 crude protein - CP), the ingredients and diets showed a higher proportion of fractions A and B1 + B2. In in vitro degradation, the diet without CC (0 g kg-1 DM) showed the highest final cumulative gas production (365.04 mL g-1 of incubated DM), while the CC presented the lowest volume (166.68 mL g-1 of incubated DM). The gas volume of non-fibrous carbohydrate fermentation and fibrous carbohydrate degradation rate exhibited a quadratic effect according increasing levels of CC (Pmax = 265.8 g kg-1 DM and Pmin = 376.3 g kg-1 DM, respectively). The lag time and final gas volume showed a decreasing linear effect with increasing levels of CC protein. The degradation rate of non-fibrous carbohydrates and the final volume of fibrous carbohydrates did not differ. Replacing soybean meal protein with CC protein at the level of 250 g kg-1 of dry matter in diets formulated for feedlot lambs leads to good profiles of ruminal fermentation kinetics with respect to the degradation of fibrous and non-fibrous carbohydrates.Downloads
References
Amanzougarene, Z., & Fondevila, M. (2020). Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10, 1935. doi: 10.3390/ani10101935
Association of Official Analytical of Chemists (2016). Official methods of analytical of the association of official analytical of chemists (20nd ed.). Washington: AOAC.
Azarfar, A., Namgay, K., Pellikaan, W., Tamminga, S., & Van der Poel, A. F. B. (2009). In vitro gas production profiles and fermentation end-products in processed barley, maize and milo. Journal Science Food Agriculture, 89(10), 1697-1708. doi: 10.1002/JSFA.3643
Brás, P., Possenti, R. A., Bueno, M. S., Canova, E. B., & Schammas, E. A. (2014). Avaliação nutricional de coprodutos da extração de óleos vegetais em dietas de ovinos. Boletim de Industria Animal, 71(2), 160-175. doi: 10.17523/bia.v71n2p160
Cabral, Í. S., Oliveira, S. S., Azevêdo, J. A. G., Souza, L. L., Lima, R. F., Lopes, C. C., Sousa, C. A. F. (2020). Ruminal fermentation kinetics of by-products using the semi-automatic technique of in-vitro gas production. Revista Brasileira de Saúde e Produção Animal, 21(1), 1-8. doi: 10.1590/S1519-99402121 242020
Calder, P. C. (2016). Fatty acids: metabolism. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of food and health (pp. 632- 644). Oxford: Academic Press.
Canova, E. B., Bueno, M. S., Moreira, H. L., Possenti, R., & Brás, P. (2015). Crambe cake (Crambe abyssinica hoschst) on lambs diets. Ciência e Agrotecnologia, 39(1), 75-81. doi: 10.1590/S1413-70542 015000100009
Carrera, R. A. B., Veloso, C. M., Knupp, L. S., Souza, A. H., Jr., Detmann, E., & Lana, R. P. (2012). Protein co-products and by-products of the biodiesel industry for ruminants feeding. Revista Brasileira de Zootecnia, 41(5), 1202-121. doi: 10.1590/S1516-35982012000500018
Carvalho, E. M. (2012). Caracterização de alimentos para ruminantes segundo o Cornell net carbohydrate and protein system - CNCPS com adaptações. Tese de doutorado, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Cooper, G., & Weber, A. (2013). An outlook on world biofuel production and its implications for the animal feed industry. In H. P. S. Makkar (Ed.), Biofuel co-products as livestock feed: opportunities and challenges (pp. 1-12). Rome: Food Agric. Organ.
Gao, J., Sun, Y., Bao, Y., Zhou, K., Kong, D., & Zhao, G. (2021). Effects of different levels of rapessed cake containing high glucosinolates in steer ration on rumen fermentation, nutrient digestibility and the rumen microbial community. British Journal of Nutrition, 125(3), 1-25. doi: 101.1017/S000711452000 2767
Getachew, M. G., Blümmel, H. P. S., & Makkar, K. B. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72,(2-4), 261-281. doi: 10.1016/S0377-8401(97)00189-2
Goes, R. H. T. B., Carneiro, M. M. Y., Brabes, K. C. S., & Lana, R. P. (2016). Coprodutos de crambe (Crambe abyssinica Hoechst) na alimentação de ruminantes. Archivos de Zootecnia, 65(249), 7-16. doi: 10.21071/az.v65i249.450
Goes, R. H. T. B., Carneiro, M. M. Y., Osmari, M. P., Souza, K. A., Oliveira, R. T., & Souza, C. J. S. (2018). Intake, digestibility, performance and carcass characteristics of ewes fed crambe replacing soybean meal in the diet. Acta Scientiarum Animal Sciences, 40, e37171. doi: 10.4025/actascianimsci.v40i1.37171
Goes, R. H. T. B., Souza, K. A., Patussi, R. A., Cornelio, T. C., Oliveira, E. R., & Brabes, K. C. S. (2010). Degradabilidade in situ dos grãos de crambe, girassol e soja e de seus coprodutos em ovinos. Acta Scientarum Animal Sciences, 32(3), 271-277. doi: 10.4025/actascianimsci.v32i3.7913
Gülşen, N., Arik, H. D., Hayirli, A., Alatas, M. S., & Aksoy, M. (2017). Utilization of cryopreserved ruminal liquor in in vitro gas production technique for evaluating nutritive value of some feedstuffs. Kafkas Universitesi Veteriner Fakültesi Dergisi, 23(2), 325-332. doi:10.9775/kvfd.2016.16527
Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi: 10.1016/03 77-8401(95)00837-3
Mauricio, R. M., Mould, F. L., Dhanoa, M. S., Owen, E., Channa, K. S., & Theodorou, M. K. (1999). A semi-automated in vitro gas production technique for ruminants feedstuff evaluation. Animal Feed Science and Technology, 79(4), 321-330. doi: 10.1016/S0377-8401(99)00033-4
McDougal, E. I. (1948). Studies on ruminal saliva. The composition and output of sheep’s saliva. Biochemical Journal, 43(1), 99-109. doi: 10.1042/bj0430099
Mizubuti, I. Y., Ribeiro, E. L. A., Pereira, E. S., Peixoto, E. L. T., Moura, E. S., Prado, O. P. P.,... Cruz, J. M. C. (2014). Cinética de degradação ruminal de alimentos proteicos pela técnica in vitro de produção de gases. Semina: Ciências Agrárias, 35(1), 555-566. doi: 10.5433/1679-0359.2014v35n1p555
Mizubuti, I. Y., Ribeiro, E. L. A., Pereira, E. S., Pinto, A. P., Franco, A. L. C., Syperreck, M. A.,… Muniz, E. B. (2011). Cinética de fermentação ruminal in vitro de alguns co-produtos gerados na cadeia produtiva do biodiesel pela técnica de produção de gás. Semina: Ciências Agrárias, 32(Supl. 1), 2021-2028. doi: 10.5433/1679-0359.2011v32n4Sup1p2021
Morais, R. K. O., Silva, A. M. A., Bezerra, L. R., Carneiro, H., Moreira, M. N., & Medeiros, F. F. (2015). In vitro degradation and total gas production of byproducts generated in the biodiesel production chain. Acta Scientiarum. Animal Sciences, 37(2), 143-148. doi: 10.4025/actascianimsci.v37i2.26309
National Research Council (2000). Nutrient requirements of beef cattle. Washington, USA: National Academies Press.
National Research Council (2007). Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. Washington, USA: National Academies Press.
Nogueira, U. T., Maurício, R. M., & Gonçalves, L. C. (2006). Comparação de substratos com diferentes quantidades de carboidratos solúveis utilizando a técnica in vitro semi-automática de produção de gases. Arquivo Brasileiro de Medicina Veterinária, 58(4), 901-909. doi: 10.1590/S0102-09352006000400027
Pegoraro, M., Silva, L. D. F., Fernandes, F., Jr., Massaro, F. L., Jr, Fortaleza, A. P. S., Grandis, F. A.,... Castro, F. A. B. (2017). Avaliação nutricional e cinética de degradação in vitro de concentrados proteicos utilizados na alimentação de ruminantes. Revista Brasileira de Ciência Veterinária, 24(1), 31-38. doi: 10.4322/rbcv.2017.007
Pell, A. N., & Schofield, P. (1993). Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science, 76(9), 1063-1073. doi: 10.3168/jds.S0022-0302(93)77435-4
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for statistical computing.
Russell, J. B., O’Connor, J. D. O., Van Soest, P. J., & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science, 70(11), 3551-3561. doi: 10.2527/1992.70113551x
Santo, A. X., Silva, L. D. F., Lançanova, J. A. C., Ribeiro, E. L. A., Mizubuti, I. Y., Fortaleza, A. P. S., Henz, É. L., Júnior, F. L. M. (2017). Fracionamento de carboidratos e proteínas, cinética de degradação ruminal in vitro pela técnica de produção de gás, de rações suplementares contendo torta de girassol. Arquivo de Medicina Veterinária e Zootecnia, 69(5), 234-242. doi: 10.1590/1678-4162-8761
Santos, L. C., Nascimento, W. G., Azevedo, M. M. R., Silva, D. K. A., Macedo, I. M., & Soares, G. S. C. (2020). Bromatological quality of silage from cassava residues: fractionation of proteins and carbohydrates. Revista Brasileira de Saúde e Produção Animal, 21, 1-13. doi: 10.1590/S1519-9940212 1302020
Schofield, P., Pitt, R. E., & Pell, A. N. (1994). Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72(11), 2980-2991. doi: 10.2527/1994.72112980x
Shurson, G. C. (2017). The role of biofuels coproducts in feeding the world sustainably. Annual Review Animal Bioscience, 5, 5.1-5.26. doi: 10.1146/annurev-animal-022516-022907
Silva, A. L., Marcondes, M. I., Veloso, C. M., Sousa, F. C., & Knupp, L. S. (2015). Simulation of rumen fermentation kinetics of by-products from the biodiesel industry with in vitro gas production technique. Semina: Ciências Agrárias, 36(6), 3851-3862. doi: 10.5433/1679-0359.2015v36n6p3851
Silva, R. B. (2013). Substituição do farelo de soja por torta de crambe para ovinos em crescimento. Dissertação de mestrado, Universidade Federal de Lavras, Lavras, MG, Brasil.
Silva, R. H. X. (2014). Cinética de fermentação ruminal de dietas com coprodutos da cadeia produtiva do biodiesel. Dissertação de mestrado, Universidade Federal da Grande Dourados, Dourados, MS, Brasil.
Sniffen, C. J., O'connor, D. J., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x
Tripathi, M. K., & Mishra, A. S. (2007). Glucosinolates in animal nutrition: a review. Animal Feed Science and Technology, 132(1), 1-27. doi: 10.1016/j.anifeedsci.2006.03.003
Viana, P. T., Pires, A. J. V., Oliveira, L. B., Carvalho, G. G. P. C., Ribeiro, L. S. O., Chagas, D. M. T., Carvalho, A. O. (2012). Fracionamento de carboidratos e de proteína das silagens de diferentes forrageiras. Revista Brasileira de Zootecnia, 41(2), 292-297. doi: 10.1590/S1516-35982012000200009
Yang, K., Qing, Y., Yu, Q., Tang, X., Chen, G., Fang, R., & Liu, H. (2021). By-products feeds: current understanding and future perspectives. Agriculture, 11(3), 1-19. doi: 10.3390/agriculture11030207
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.