Detection and semi-quantification of antibody to feline coronavirus in cats from the microregion of Ilhéus-Itabuna, Bahia, Brazil
DOI:
https://doi.org/10.5433/1679-0359.2021v42n2p747Keywords:
Enteric Coronavirus, Felines, Infectious peritonitis, Serology.Abstract
Feline coronavirus (FCoV) is an important virus that can be differentiated into two serotypes: feline enteric coronavirus (FECoV) and feline infectious peritonitis (FIP) virus (FIPV). Researchers have suggested that a mutation of FECoV to FIPV leads to the emergence of FIP, a disease with worldwide distribution and a high mortality rate. Furthermore, in December 2019, a human infectious disease, coronavirus disease-2019 (COVID-19), which is also caused by a coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged, and clarity regarding its relationship with FCoV remains lacking. Studies have shown that cats are susceptible to infection with this novel coronavirus (i.e., SARS-CoV-2). The aim of the present study was to detect and semi-quantify the presence of feline antibodies to FIPV in cats examined at the Veterinary Hospital of Santa Cruz State University, microregion of Ilhéus and Itabuna, Bahia, Brazil, between January and April 2018. Blood samples were collected from 68 domestic cats to perform complete blood count (CBC) and biochemical tests, and an indirect fluorescent antibody test (IFAT) was used to detect FCoV infection. Of the 68 samples evaluated, seropositivity was observed in 4.4% (3/68) at titers of 1:20; only one sample remained seropositive at titers of 1:40 and 1:80. Two positive animals exhibited CBC and biochemical values within the normal range, while the other positive animals exhibited a mild decrease in platelet count (173,000 uL-1), mild lymphocytosis (7395 uL-1), and mildly increased alkaline phosphatase level (134 uL-1). Twelve months after the tests, none of the positive animals exhibited clinical signs consistent with FIP. Although the IFAT can facilitate diagnosis of FPIV, it cannot be used to differentiate antibodies for the FECoV and FIPV serotypes. Results of the present study demonstrated that FCoV was present in the population studied, and is an important risk factor for the development of FIP. In addition, the new COVID-19 pandemic highlights the importance of studies investigating FCoV because it was not possible to rule out, until now, the possibility of FCoV mutations in infected cats if it encounters SARS-CoV-2.
Downloads
References
Almeida, A. C. S., Galdino, M. V., & Araújo, J. P., Jr. (2019). Seroepidemiological study of feline coronavirus (FCoV) infection in domiciled cats from Botucatu, São Paulo, Brazil. Pesquisa Veterinária Brasileira, 39(2), 129-133. doi: 10.1590/1678-5150-PVB-5706
Baker, D. C. (2015). Diagnóstico das anormalidades de hemostasia. In M. A. Thrall, G. Weiser, R. W. Alison, & T. W. Campbell (Eds.), Hematologia e bioquímica clínica veterinária (2a ed., pp. 399-439). São Paulo: Roca.
Fam, A. L. P. D., Rocha, R. M. V. M., Pimpão, C. T., & Cruz, M. A. (2010). Alterations on leukogram of domestic felines (Felis catus) due to acute and chronic stress. Revista Acadêmica: Ciências Agrárias e Ambientais, 8(3), 299-306. doi: 10.7213/cienciaanimal.v8i3.10898
Felten S., & Hartmann, K. (2019). Diagnosis of feline infectious peritonitis: a review of the current literature. Viruses, 11(11), 1-35. doi: 10.3390/v11111068
Guan, X., Li, H., Han, M., Jia, S., Feng, B., Gao, X.,… Xu, Y. (2020). Epidemiological investigation of feline infectious peritonitis in cats living in Harbin, Northeast China from 2017 to 2019 using a combination of an EvaGreen-based real-time RT-PCR and serum chemistry assays. Molecular and Cellular Probes, 49, 1-9. doi: 10.1016/j.mcp.2019.101495
Holmes, K. V. (1999). Coronaviruses (Coronaviridae). Encyclopedia of Virology, 291-298. doi: 10.1006/ rwvi.1999.0055
Hsie, L., Huang, W., Tang, D., Wang, Y., Chen, C., & Chueh, L. (2013). 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway. Research in Veterinary Science, 95(3), 1241-1247. doi: 10.1016/j.rvsc.2013.08.011
Hsu, L., Lee, C., Green, J. A., Ang, B., Paton, N. I., Lee, L.,… Leo, Y. (2003). Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts. Emerging Infectious Diseases, 9(6), 713-717. doi: 10.3201/eid0906.030264
Johann, J. M., Caetano, C. F., Hass, R., Guim, T. N., Fischer, G., Vargas, G. D.,… Hübner, S. O. (2009). Serum survey for antibodies to coronavirus, herpesvirus, calicivirus, and parvovirus in domestics cats from Rio Grande do Sul, Brazil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 61(3), 752-754. doi: 10.1590/S0102-09352009000300033
Kennedy, M. A., Abd-Eldaim, M., Zika, S. E., Mankin, J. M., & Kania, S. A. (2008). Evaluation of antibodies against feline coronavirus 7b protein for diagnosis of feline infectious peritonitis in cats. American Journal of Veterinary Research, 69(9), 1179-1182. doi: 10.2460/ajvr.69.9.1179
Kerr, M. (2003). Exames laboratoriais em medicina veterinária - bioquímica clínica e hematologia (2a ed.). São Paulo: Roca.
Lappin, M. R. (2010). Doenças infecciosas. In R. W. Nelson, & C. G. Couto, Medicina interna de pequenos animais (4a ed., pp. 1339-42). Rio de Janeiro: Elsevier.
Myhrra, L. W., Silva, F. M. F., Vidigal, P. M. P., Resende, M., Bressan, G. C., Fietto, J. L. R.,... Almeida, M. R. (2019). Feline coronavirus isolates from a part of Brazil: insights into molecular epidemiology and phylogeny inferred from the 7b gene. The Journal of Veterinary Medical Science, 81(10), 1455-1460. doi: 10.1292/jvms.19-0090
Nibblett, B. M., Ketzis, J. K., & Grigg, E. K. (2015). Comparison of stress exhibited by cats examined in a clinicversus a home setting. Applied Animal Behaviour Science, 173, 68-75. doi: 10.1016/j.applanim. 2014.10.005
Pedersen, N. C. (2009). A review of feline infectious peritonitis virus infection: 1963-2008. Journal of Feline Medicine and Surgery, 11(4), 225-258. doi: 10.1016/j.jfms.2008.09.008
Pedersen, N. C., Allen, C. E., & Lyons, L. A. (2008). Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery, 10(6), 529-541. doi: 10.1016/j.jfms.2008.02.006
Pratelli, A. (2008). Comparison of serologic techniques for detection of antibodies against feline coronaviruses. Journal of Veterinary Diagnostic Investigation, 20(1), 45-50. doi: 10.1177/1040638708 02000108
Riemer, F., Kuehner, K. A., Ritz, S., Sauter-Louis, C., & Hartmann, K. (2016). Clinical and laboratory features of cats with feline infectious peritonitis - a retrospective study of 231 confirmed cases (2000-2010). Journal of Feline Medicine and Surgery, 18(4), 348-356. doi: 10.1177/1098612X15586209
Sangl, L., Matiasek, K., Felten, S., Gründl, S., Bergmann, M., Balzer, H.,… Hartmann, K. (2019). Detection of feline coronavirus mutations in paraffin-embedded tissues in cats with feline infectious peritonitis and controls. Journal of Feline Medicine and Surgery, 21(2), 133-142. doi: 10.1177/1098612X 187628 83
SanJuán, R., & Domingo-Calap, P. (2019). Genetic diversity and evolution of viral populations. Reference Module in Life Sciences, 1-9. doi: 10.1016/B978-0-12-809633-8.20958-8
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Liu, R.,… Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-coronavirus-2. Science, 368(6494), 1-10. doi: 10.1126/ science.abb7015
Sparkes, A. H. (2006). Infecção por coronavírus felino. In E. A. Chandler, C. J. Gaskell, & R. M. Gaskell (Eds.), Clínica e terapêutica em felinos (3a ed., pp. 508-518). São Paulo: Roca.
Thrall, M. A. (2006). Hematologia e bioquímica clínica veterinária. São Paulo: Roca.
Vennema, H., Poland, A., Foley, J., & Pedersen, N. C. (1998). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology, 243(1), 150-157. doi: 10.1006/viro.1998. 9045
Vogel, L., Van der Lubben, M., Lintelo, E. G., Bekker, C. P. J., Geerts, T., Schuijff, L. S.,… Rottier, P. J. M. (2010). Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Veterinary Research, 41(71), 1-12. doi: 10.1051/vetres/2010043
Wang, H., Hirabayashi, M., Chambers, J. K., Uchida, K., & Nakayama, H. J. (2018). Immunohistochemical studies on meningoencephalitis in feline infectious peritonitis (FIP). The Journal of Veterinary Medical Science, 80(12), 1813-1817. doi: 10.1292/jvms.18-0406
Weiser, G. (2015). Tecnologia laboratorial em medicina veterinária. In M. A. Thrall, G. Weiser, R. W. Alison, & T. W. Campbell (Eds.), Hematologia e bioquímica clínica veterinária (2a ed., pp. 22-305). São Paulo: Roca.
Zumla, A., Hui, D. S., & Perlman, S. (2015). Middle East respiratory syndrome. Seminar, 386, 995-1007. doi: 10.1016/S0140-6736(15)60454-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.