Fungal cellulases: production by solid-state cultivation in packed-bed bioreactor using solid agro-industrial by-products as substrates and application for hydrolysis of sugarcane bagasse
DOI:
https://doi.org/10.5433/1679-0359.2020v41n5supl1p2097Keywords:
Bioethanol, Cellulases, Pretreatment, Saccharification, Solid cultivation.Abstract
Cellulases are essential for the hydrolysis of lignocellulosic materials in the production of second generation ethanol. Solid-state cultivation is a process that provides high concentrations of enzymes that can be used in this hydrolysis. The objectives of this work were to produce cellulases by cultivating the fungus Myceliophthora thermophila I-1D3b in a packed bed bioreactor with sugarcane bagasse (SCB) and wheat bran (WB) as substrate and to evaluate the efficiency of the enzymatic extract in the hydrolysis of SCB in natura (BIN) and pretreated with ozone, alkali and ultrasound (BOU). The conditions for enzyme production in the bioreactor were SCB:WB at a ratio of 2.3:1 (w/w), 75 % moisture content; 45 ºC; aeration rate 240 L h-1 and 96 h. The enzyme production was evaluated by endoglucanase, xylanase, filter paper (FPU) and ?-glycosidase activities. For the application of the enzymes, a central composed response surface design with 5 repetitions of the central point was used, taking enzyme volume and hydrolysis time as factors. Such cultivation yielded the following enzymatic activities: 723 U gss-1 of endoglucanases, 2024 U gss-1 of xylanase, 12.6 U gss-1 of FPU and 41 U gss-1 of ?-glucosidase. The results of the application tests indicated the best conditions as 7.0 ml of the enzyme extract (4.2 FPU) and 6 hours for BIN and BOU. The best cellulose-glucose conversions were obtained for BOU, reaching 32.1 % at 65 ºC. In conclusion, the enzyme production in the packed bed bioreactor was efficient and BOU pretreatment improved the hydrolysis of biomass, increasing the efficiency of conversion of cellulose to glucose.Downloads
References
Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Production of multiple xylanilytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technology, 98(3), 504-510. doi: 10.1016/j.biortech.2006.02.009
Bailey, M. J., Peterbiely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257-270. doi: 10.1016/0168-1656(92)90074-J
Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551-573. doi: 10.1016/j.pecs.2007.11.001
Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 1-19. doi: 10.3389/fenrg.2018.00141
Bi, S., Peng, L., Chen, K., & Zhu, Z. (2016). Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH. Bioresource Technology, 214, 692-699. doi: 10.1016/j.biortech. 2016.05.041
Calado, V., & Montgomery, D. (2003). Planejamento de experimentos usando o Statistic. Rio de Janeiro: E-papers Serviços Editoriais.
Canilha, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., & Silva, S. S. da. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 2012, 1-15. doi: 10.1155/2012/989572
Cantwell, B. A., Sharp, P. M., Gormley, E., & Mcconnell, D. J. (1988). Molecular cloning of bacillus b-glucanases. In J. P. Aubert, P. Beguin, & J. Millet (Eds.), Biochemistry and genetics of cellulose degradation (pp. 181-201). San Diego: Academic Press.
Casciatori, F. P., Bück, A., Thoméo, J. C., & Tsotsas, E. (2016). Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chemical Engineering Journal, 287, 103-116. doi: 10.1016/j.cej.2015.10.108
Casciatori, F. P., Casciatori, P. A., & Thoméo, J. C. (2013). Cellulase production in packed bed bioreactor by solid-state fermentation. Proceedings of the European Biomass Conference and Exhibition, Copenhagen, Dinamarca, 21st. doi: 10.5071/21stEUBCE2013-3DV.1.13
Derakhti, S., Shojaosadati, S. A., Hashemi, M., & Khajeh, K. (2012). Process parameters study of α-amylase production in a packed-bed bioreactor under solid-state fermentation with possibility of temperature monitoring. Preparative Biochemistry and Biotechnology, 42(3), 203-216. doi: 10.1080/10826068.2011. 599466
Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis biotechnology monographs. Berlin: Springer-Verlag.
Florencio, C., Badino, A. C., & Farinas, C. S. (2017). Desafios relacionados à produção e aplicação das enzimas celulolíticas na hidrólise da biomassa lignocelulósica. Química Nova, 40(9), 1082-1093. doi: 10. 21577/0100-4042.20170104
Frassatto, P. A. C., Casciatori, F. P., Thoméo, J. C., Gomes, E., Boscolo, M., & Silva, R. da. (2020). β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Conversion and Biorefinery, 1-11. doi: 10.1007/s13399-020-00608-1
Ghildyal, N. P., Gowthaman, M. K., Raghava Rao, K. S. M. S., & Karanth, N. G. (1994). Interaction of transport resistances with biochemical reaction in packed-bed solid-state fermentors: Effect of temperature gradients. Enzyme and Microbial Technology, 16(3), 253-257. doi: 10.1016/0141-0229(94) 90051-5
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. doi: 10.1351/pac198759020257
Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., & Macris, B. J. (2003). Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochemistry, 38(7), 1099-1104. doi: 10.1016/S0032-9592(02)00242-X
Leite, R. S. R., Bocchini, D. A., Martins, E. S., Silva, D., Gomes, E., & Silva, R. da. (2007). Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluanson solid state fermentation. Applied Biochemistry and Biotechnology, 137(1-12), 281-288. doi: 10.1007/s12010-007-9058-y
Liu, C., Suna, R., Qin, M., Zhang, A., Rena, J., Xub, F.,… Wu, S. (2007). Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Industrial Crops and Products, 26(2), 212-219. doi: 10.1016/j.indcrop.2007.03.007
Lopes, A. M., Ferreira, E. X., Fº., & Moreira, L. R. S. (2018). An update on enzymatic cocktails for lignocellulose breakdown. Journal of Applied Microbiology, 125(3), 632-645. doi: 10.1111/jam.13923
Manan, M. A., & Webb, C. (2017). Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology & Bioengineering, 4(1), 511-532. doi: 10.15406/jabb. 2017.04.00094
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030
Mishima, D., Tateda, M., Ike, M., & Fujita, M. (2006). Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technology, 97(16), 2166-2172. doi: 10.1016/j.biortech.2005.09.029
Mitchell, D. A., Krieger, N., & Berovic, M. (2006). Solid-state fermentation bioreactors: fundamentals, design and operation. Berlin: Springer-Verlag.
Mitchell, D. A., Pandey, A., Sangsurasak, P., & Krieger, N. (1999). Scale-up strategies for packed bed bioreactors for solid state fermentation. Process Biochemistry, 35(1-2), 167-178. doi: 10.1016/S0032-9592(99)00048-5
Molina, G., Contesini, F. J., Melo, C. R. R. de, Sato, H. H., & Pastore, G. M. (2016). β-Glucosidase from Aspergillus. In V. K. Gupta (Eds.), New and future developments in microbial biotechnology and bioengineering: aspergillus system properties and applications (pp. 155-169). Amsterdã: Elsevier.
Montgomery, D. C. (2001). Design and analysis of experiments. New York: John Wiley & Sons.
Moretti, M. M. S., Bocchini-Martins, D. A., Silva, R. da, Rodrigues, A., Sette, L. D., & Gomes, E. (2012). Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology, 43(3), 1062-1071. doi: 10.1590/S1517-83822012000300032
Oliveira Rodrigues, P. de, Pereira, J. C., Queiroz, D., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2017). Synergistic action of an Aspergillus (hemi-) cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 109(1), 173-181. doi: 10.1016/j.indcrop.2017.08.031
Pereira, J. C., Travaini, R., Marques, N. P., Bolado-Rodríguez, S., & Martins, D. A. B. (2016). Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and etanol production. Bioresource Technology, 204, 122-129. doi: 10.1016/j. biortech.2015.12.064
Perez, C. L., Casciatori, F. P., & Thoméo, J. C. (2019). Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: the case of cellulolytic enzymes production by a thermophilic fungus. Chemical Engineering Journal, 361, 1142-1151. doi: 10.1016/j.cej.2018.12.169
Perrone, O. M., Colombari, F. M., Rossi, J. S., Moretti, M. M. S., Bordignon, S. E., Nunes, C. C. C., Silva, R. da. (2016). Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresource Technology, 218, 69-76. doi: 10.1016/j.biortech.2016.06.072
Plácido, J., & Capareda, S. (2014). Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresources and Bioprocessing, 1(23), 1-9. doi: 10.1186/s40643-014-0023-7
Sandgren, M., Stahlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 89(3), 246-291. doi: 10.1016/j.pbiomolbio.2004.11.002
Silva, R. da, Lago, E. S., Merheb, C. W., Macchione, M. M., & Park, Y. K. (2005). Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus Miehe. Brazilian Journal of Microbiology, 36(3), 235-241. doi: 10.1590/S1517-83822005000300006
Sluiter, A., Hames, B., Ruiz, R. O., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL, TP-510-42618). Biomass Anal. Golden, CO: National Renewable Energy Laboratory Technol. (Recuperado de https://www.nrel.gov/biomass/pdfs/42618.pdf
Soni, R., Nazir, A., Chadha B. S., & Saini, H. S. (2008). Novel sources of fungal cellulases for efficient deinking of composite paper wast. Bioresources, 3(1), 234-246.
Souza-Corrêa, J. A., Oliveira, C., Nascimento, V. M., Wolf, L. D., Gómez, E. O., Rocha, G. J. M., & Amorim, J. (2014). Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of biomass particle size in the ozonation process. Applied Biochemistry and Biotechnology, 172(3), 1663-1672. doi: 10.1007/s12010-013-0609-0
Souza-Corrêa, J. A., Ridenti, M. A., Oliveira, C., Araújo, S. R., & Amorim, J. (2013). Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries. The Journal of Physical Chemistry, 117(11), 3110-3119. doi: 10.1021/jp3121879
Sun, J. X., Sun, R., Sun, X. F., & Su, Y. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydrate Research, 339(2), 291-300. doi: 10.1016/j.carres.2003.10.027
Travaini, R., Otero, M. D. M., Coca, M., Silva, R. da, & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332-339. doi: 10.1016/j.biortech.2013.01.133
Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresource Technology, 102(14), 7119-7123. doi: 10.1016/j. biortech.2011.04.045
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. doi: 10.1016/j.fuel.2006.12.013
Zanelato, A. I., Shiota, V. M., Gomes, E., & Thoméo, J. C. (2012). Endoglucanase production with the newly isolated Myceliophthora sp. I-1D3b in a packed bed solid state fermentor. Brazilian Journal of Microbiology, 43(4), 1536-1544. doi: 10.1590/S1517-83822012000400038
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.