Hematologia e bioquímica sérica de frangos de corte suplementados com sulfatos de condroitina e de glucosamina na ração
DOI:
https://doi.org/10.5433/1679-0359.2023v44n1p393Palavras-chave:
Eritrócitos, Glicosaminoglicanos polissulfatados, Leucócitos totais, Minerais séricos, Trombócitos.Resumo
Objetivou-se avaliar a hematologia e a bioquímica sérica de frangos de corte suplementados com sulfatos de condroitina e de glucosamina na ração. Foi conduzido um experimento em delineamento inteiramente casualizado, em esquema fatorial 3 x 3 (três níveis de sulfato de condroitina: 0; 0,05 e 0,10%; e três níveis de sulfato de glucosamina: 0; 0,15 e 0,30%), cada tratamento com seis repetições de 30 aves. Foram avaliadas as variáveis de hematologia (hemácias, hemoglobina, hematócrito, proteínas plasmáticas totais [PPT], trombócitos, leucócitos, eosinófilos, monócitos, heterofilos e linfócitos) e bioquímica sérica (proteínas séricas totais [PST], albumina, globulinas, aspartato aminotransferase [AST], gama glutamiltransferase [GGT], fosfatase alcalina [FA], cálcio total, cálcio iônico, fósforo, sódio, potássio e cloretos) aos 21 e 42 dias. Os dados foram submetidos à análise de variância. Quando as médias diferiram significativamente pelo teste F, a análise ortogonal foi realizada para testar os efeitos lineares e quadráticos dos níveis dos sulfatos de condroitina e de glucosamina. Observou-se efeito linear decrescente (p = 0,0399) do sulfato de glucosamina na quantidade de monócitos aos 42 dias. Houve interação dos sulfatos para leucócitos totais (p = 0,0099) e linfócitos (p = 0,0004) aos 21 dias. Frangos suplementados com 0,10% de sulfato de condroitina mostraram um aumento linear dos leucócitos (p = 0,0287) e dos linfócitos (p = 0,0144) com a inclusão de sulfato de glucosamina. A suplementação com sulfato de condroitina aumentou linearmente (p = 0,0099) a albumina sérica e afetou de forma quadrática (p = 0,0140) as PST aos 21 dias. O sulfato de glucosamina demonstrou um efeito quadrático (p < 0,05) sobre a albumina aos 42 dias, o menor valor foi encontrado para a inclusão de 0,06%, respectivamente. O sulfato de glucosamina reduziu linearmente (p = 0,0237) os cloretos aos 21 dias e aumentou linearmente (p = 0,0012) o cálcio total aos 42 dias. Verificouse interação (p < 0,05) dos sulfatos para cálcio total aos 21 dias, cálcio iônico aos 21 e 42 dias e para fósforo, cloretos e sódio aos 42 dias. A suplementação com os sulfatos de condroitina e de glucosamina na ração de frangos de corte favoreceram o sistema imune e o metabolismo de minerais, com aumento nas concentrações séricas de cálcio, fósforo e sódio.
Downloads
Referências
Bowers, G. N., & McComb, R. B. (1966). A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clinical Chemistry, 12(2), 70-89. doi: 10.1093/clinchem/12.2.70 DOI: https://doi.org/10.1093/clinchem/12.2.70
Calamia, V., Lourido, L., Fernández-Puente, P., Mateos, J., Rocha, B., Montell, E., Vergés, J., Ruiz-Romero, C., & Blanco, F. J. (2012). Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Research &Therapy, 14(5), R202. doi: 10.1186/ar4040 DOI: https://doi.org/10.1186/ar4040
Calamia, V., Mateos, J., Fernández-Puente, P., Lourido, L., Rocha, B., Fernández-Costa, C., Montell, E., Vergés, J., Ruiz-Romero, C., & Blanco, F. J. (2014). A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Scientific Reports, 4, R5069. doi: 10.1038/srep05069 DOI: https://doi.org/10.1038/srep05069
Carvalho, G. B., Martins, P. C., Rezende, P. M., Santos, J. S., Oliveira, E., Trentin, T. C., Martins, D. B., Stringhini, J. H., & Café, M. C. (2020). Hematology and serum biochemistry of broilers at the initial and growth stages submitted to different levels of digestible sulfur amino acids. Ciência Rural, 50(5), e20180881. doi: 10.1590/0103-8478cr20180881 DOI: https://doi.org/10.1590/0103-8478cr20180881
Castrogiovanni, P., Trovato, F. M., Loreto, C., Nsir, H., Szychlinska, M. A., & Musumeci, G. (2016). Nutraceutical supplements in the management and prevention of osteoarthritis. International Journal of Molecular Sciences, 17(12), 2042. doi: 10.3390/ijms17122042 DOI: https://doi.org/10.3390/ijms17122042
Chen, N. H., Cheong, K. A., Kim, C. H., Noh, M., & Lee, A. Y. (2013). Glucosamine induces activated T cell apoptosis through reduced T cell receptor. Scandinavian Journal of Immunology, 78(1), 17-27. doi: 10.1111/sji.12056 DOI: https://doi.org/10.1111/sji.12056
Cobb (2008). Manual de manejo de frangos de corte Cobb. Cobb-Vantress Brasil.
Daly, J. A., & Ertingshausen, G. (1972). Direct method for determining inorganic phosphate in serum with the centrifichem. Clinical Chemistry, 18(3), 263-265. doi: 10.1093/clinchem/18.3.263 DOI: https://doi.org/10.1093/clinchem/18.3.263
Farm Animal Welfare Council (2012). Fave freedoms. https://webarchive.nationalarchives.gov.uk/ukgwa/20121010012427/http:/www.fawc.org.uk/freedoms.htm
Gocsik, É., Kortes, H. E., Oude Lansink, A. J. M., & Saatkamp, H. W. (2014). Impact of different broiler production systems on health care costs in the Netherlands. Poultry Science, 93(6), 1301-1317. doi: 10.3382/os.2013-0361 DOI: https://doi.org/10.3382/ps.2013-03614
Goff, J. P. (2017). Cartilagem, ossos e articulações. In W. O. Reece (Ed.), Dukes fisiologia dos animais domésticos. (12a ed., pp. 575-595). Rio de Janeiro.
Gouze, J. N., Bordji, K., Gulberti, S., Terlain, B., Netter, P., Magdalou, J., Fournel-Gigleux, S., & Ouzzine, M. (2001). Interleukin-1beta down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1beta-mediated effects in rat chondrocytes. Arthritis & Rheumatogy, 44(2), 351-360. doi: 10.1002/1529-0131(200102)44:2<351::AID-ANR53>3.0.CO;2-M DOI: https://doi.org/10.1002/1529-0131(200102)44:2<351::AID-ANR53>3.0.CO;2-M
Hernandez, S. E. R., Streeter, I., & Leeuw, N. H. (2015). The effect of water on the binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: a molecular dynamics study. Physical Chemistry Chemical Physics, 17(34), 22377-22388. doi: 10.1039/c5cp02630j DOI: https://doi.org/10.1039/C5CP02630J
Imik, H., Terim Kapakin, K. A., Gumu, R., Kapakin, S., & Kurt, A. (2012). The effect of tibial dyschondroplasia on metabolic parameters in broiler chickens. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 59(4), 271-277. doi: 10.1501/Vetfak_0000002538 DOI: https://doi.org/10.1501/Vetfak_0000002538
Jerosch, J. (2011). Effects of glucosamine and chondroitin sulfate on cartilage metabolism in AO: outllok on other nutrient partners especially omega-3 fatty acids. International Journal of Rheumatology, 2011, 1-17. doi: 10.1155/2011/969012 DOI: https://doi.org/10.1155/2011/969012
Kamarul, T., Ab-Rahim, S., Tumin, M., Selvaratnam, L., & Ahmad, T. S. (2011). A preliminary study of the effects of glucosamine sulphate and chondroitin sulphate on surgically treated and untreated focal cartilage damage. European Cells and Materials, 21, 259-271. doi: 10.22203/ecm.v021a20 DOI: https://doi.org/10.22203/eCM.v021a20
Kantor, E. D., Lampe, J. W., Navarro, S. L., Song, X., Milne, G. L., & White, E. (2014). Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. Journal of Alternative and Complementary Medicine, 20(6), 479-485. doi: 10.1089/acm.2013.0323 DOI: https://doi.org/10.1089/acm.2013.0323
Kim, H. D., Lee, E. A., An, Y. H., Kim, S. L., Lee, S. S., Yu, S. J., Jang, H. L., Nam, K. T., Im, S. G., & Hwang, N. S. (2017). Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Applied Materials & Interfaces, 9(26), 21639-21650. doi: 10.1021/acsami.7b04114 DOI: https://doi.org/10.1021/acsami.7b04114
Martins, J. M. S., Santos, L. D., Neto, Gomides, L. P. S., Fernandes, L. P. S., Sgavioli, S., Stringhini, J. H., Leandro, N. S. M., & Café, M. B. (2020a). Performance, nutrient digestibility, and intestinal histomorphometry of broilers fed diet supplemented with chondroitin and glucosamine sulfates. Revista Brasileira de Zootecnia, 49, e20190248. doi: 10.37496/rbz4920190248 DOI: https://doi.org/10.37496/rbz4920190248
Martins, J. M. S., Santos, L. D., Neto, Noleto-Mendonça, R. A., Carvalho, G. B., Sgavioli, S., Carvalho, F. B., Leandro, N. S. M., & Café, M. B. (2020b). Dietary supplementation with glycosaminoglycans reduces locomotor problems in broiler chickens. Poultry Science, 99(12), 6974-6982. doi: 10.1016/j.psj.2020.09.061 DOI: https://doi.org/10.1016/j.psj.2020.09.061
Melillo, A. (2013). Applications of serum protein electrophoresis in exotic pet medicine. Veterinary Clinics of North America: Exotic Animal Practice, 16(1), 211-225. doi: 10.1016/j.cvex.2012.11.002 DOI: https://doi.org/10.1016/j.cvex.2012.11.002
Murakami, A. E., Oviedo-Rondon, E. O., Martins, E. N., Pereira, M. S., & Scapinello, C. (2001). Sodium and chloride requirements of growing broiler chickens (twenty-one to forty-two days of age) fed corn-soybean diets. Poultry Science, 80(3), 289-294. doi: 10.1093/ps/80.3.289 DOI: https://doi.org/10.1093/ps/80.3.289
Natt, M. P., & Herrick, C. A. (1952). A new blood diluent for couting eytrocytes and leucocytes of the chicken. Poultry Science, 31(4), 735-738. doi: 10.3382/ps.0310735 DOI: https://doi.org/10.3382/ps.0310735
Noushi, A. A., & Naji, A. S. N. (2013). Possible adverse effects of once-daily oral therapeutic dose of either glucosamine sulfate or glucosamine/chondroitin sulfate on blood cells count in rats. International Research Journal of Pharmacy, 4(10), 24-29. doi: 10.7897/2230-8407.041007 DOI: https://doi.org/10.7897/2230-8407.041007
Oviedo-Rondón, E. O., Murakami, A. E., Furlan, A. C., Moreira, I., & Macari, M. (2001) Sodium and chloride requirements of young broiler chickens fed corn-soybean diets (one to twenty-one days of age). Poultry Science, 80(5), 592-598. doi: 10.1093/os/80.5.592 DOI: https://doi.org/10.1093/ps/80.5.592
Pizauro, J. M., Jr., Santos, L. F. J., & Gonçalves, A. M. (2017). Regulação do metabolismo ósseo por hormônios e íons inorgânicos. In M. Macari, & A. Maiorka (Eds.), Fisiologia das aves comerciais (pp. 514-530). Jaboticabal.
Proszkowiec-Weglarz, M., & Angel, R. (2013). Calcium and phosphorus metabolism in broilers: effect of homeostatic mechanism on calcium and phosphorus digestibility. Journal of Applied Poultry Research, 22(3), 609-627. doi: 10.3382/japr.2012-00743 DOI: https://doi.org/10.3382/japr.2012-00743
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. F., Lopes, D. C., Ferreira, A. S., Barreto, S. L. T., & Euclides, R. F. (2011). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (3a ed.). Universidade Federal de Viçosa.
Sadeghi, B., Hägglund, H., Remberger, M., Al-Hashmi, S., Hassan, Z., Abedi-Valugerdi, M., & Hassan, M. (2011). Glucosamine activates T lymphocytes in healthy individuals and may induce GVHD/GVL in stem cell transplanted recipients. The Open Transplantation Journal, 5, 1-7. doi: 10.2174/1874418401105010001 DOI: https://doi.org/10.2174/1874418401105010001
Santos, E. T., Sgavioli, S., Castiblanco, D. M. C., Borges, L. L., Quadros, T. C. O., Laurentiz, A. C., Shimano, A. C., Lizandra, A., & Baraldi-Artoni, S. M. (2019). Glycosaminoglycans and vitamin C affect broiler bone paramenters. Poultry Science, 98(10), 4694-4704. doi: 10.3382/ps/pez177 DOI: https://doi.org/10.3382/ps/pez177
Santos, E. T., Sgavioli, S., Castiblanco, D. M. C., Domingues, C. H. F., Quadros, T. C. O., Borges, L. L., Petrolli, T. G., & Baraldi-Artoni, S. M. (2018). Glycosaminoglycans and vitamin C in ovo feeding affects bone characteristics of chicks. Revista Brasileira de Zootecnia, 47, e20170304. doi: 10.1590/rbz4720170304 DOI: https://doi.org/10.1590/rbz4720170304
Statistical Analysis System Institute (2002). SAS/STAT User’s guide: statistics. Version 9.2. SAS Inst. Inc.
Schumann, G., Bonora, R., Ceriotti, F., Férard, G., Ferrero, C. A., Franck, P. F., Gella, F. J., Hoelzel, W., Jørgensen, P. J., Kanno, T., Kessner, A., Klauke, R., Kristiansen, N., Lessinger, J. M., Linsinger, T.P., Misaki, H., Panteghini, M., Pauwels, J., Schiele, F.,… Siekmann, L. (2002). IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. Part 6. Clinical Chemistry and Laboratory Medicine, 40(7), 734-738. doi: 10.1515/CCLM.2002.125 DOI: https://doi.org/10.1515/CCLM.2002.126
Schwean-Lardner, K., Fancher, B. I., Gomis, S., Van Kessel, A., Dalal, S., & Classen, H. L. (2013). Effect of day length on cause of mortality, leg health, and ocular health in broilers. Poultry Science, 92(1), 1-11. doi: 10.3382/os.2011-01967 DOI: https://doi.org/10.3382/ps.2011-01967
Sgavioli, S., Santos, E. T., Borges, L. L., Andrade-Garcia, G. M., Castiblanco, D. M. C., Almeida, V. R., Garcia, R. G., Shimano, A. C., Nääs, I. A., & Baraldi-Artoni, S. M. (2017). Effect of the addition of glycosaminoglycans on bone and cartilaginous development of broiler chickens. Poultry Science, 96(11), 4017-4025. doi: 10.3382/ps/pex228 DOI: https://doi.org/10.3382/ps/pex228
Shim, M. Y, Karnuah, A. B., Anthony, N. B., Pesti, G. M., & Aggrey, S. E. (2012). The effects of broiler chicken growth rate on valgus, varus, and tibial dyschondroplasia. Poultry Science, 91(1), 62-65. doi: 10.3382/ps.2011-01599 DOI: https://doi.org/10.3382/ps.2011-01599
Szasz, G. (1969). A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clinical Chemistry, 15(2), 124-136. doi: 10.1093/clinchem/15.2.124 DOI: https://doi.org/10.1093/clinchem/15.2.124
Taniguchi, S., Ryu, J., Seki, M., Sumino, T., Tokuhaschi, Y., & Esumi, M. (2012). Long-tern oral administration of glucosamine or chondroitin sulfate reduces destruction of cartilage andu p-regulation of MMP-3 mRNA in a model of spontaneous osteorthritis in Hartley guinea pigs. Journal of Orthopaedic Research, 30(5), 673-678. doi: 10.1002/jor.22003 DOI: https://doi.org/10.1002/jor.22003
Thrall, M. A., Weiser, G., Allison, R. W., & Campbell, T. W. (Eds.) (2015). Hematologia e bioquímica clínica veterinária (2a ed.). Roca.
Ustyuzhanina, N. E., Anisimova, N. Y., Bilan, M. I., Donenko, F. V., Morozevich, G. E., Yashunskiy, D. V., Usov, A. I., Siminyan, N. G., Kirgisov, K. I., Varfolomeeva, S. R., Kiselevskiy, M. V., & Nifantiev, N. E. (2021). Chondroitin sulfate and fucosylated chondroitin sulfate as stimulators of hematopoiesis in cyclophosphamide-induced mice. Pharmaceuticals, 14(11), 1074. doi: 10.3390/ph14111074 DOI: https://doi.org/10.3390/ph14111074
Valvason, C., Musacchio, E., Pozzuoli, A., Ramonda, R., Aldegheri, R., & Punzi, L. (2008). Influence of glucosamine sulphate on oxidative stress in human osteoarthritic chondrocytes: effects on HO-1, p22Phox and iNOS expression. Rheumatology, 47(1), 31-35. doi: 10.1093/rheumatology/kem289 DOI: https://doi.org/10.1093/rheumatology/kem289
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.