Celulases fúngicas: produção por cultivo sólido em biorreator de leito empacotado usando resíduos sólidos agroindustriais como substratos e aplicação na hidrólise de bagaço de cana
DOI:
https://doi.org/10.5433/1679-0359.2020v41n5supl1p2097Palavras-chave:
Bioetanol, Celulases, Pré-tratamento, Sacarificação, Cultivo sólido.Resumo
Celulases são essenciais para a hidrólise de materiais lignocelulósicos visando à produção de etanol de segunda geração. O cultivo em estado sólido é um processo que proporciona altas concentrações de enzimas que podem ser aplicadas nessa hidrólise. O objetivo deste trabalho foi produzir celulases pelo fungo Myceliophthora thermophila I-1D3b em biorreator de leito empacotado com bagaço de cana (BC) e farelo de trigo (FT) como substrato e avaliar a eficiência deste extrato enzimático na hidrólise de bagaço de cana in natura (BIN) e pré-tratado com ozônio, álcali e ultrassom (BOU). As condições para produção de enzimas no biorreator foram BC:FT numa proporção de 2,3:1 (m/m); 75 % de umidade em base úmida; 45 ºC; taxa de aeração 240 L h-1 e 96 h. A produção de enzimas foi avaliada pelas atividades de endoglucanase, xilanase, papel de filtro (FPU) e ?-glicosidase. Para a aplicação das enzimas, foi utilizado um planejamento de superfície de resposta central composto com 5 repetições do ponto central, tendo como fatores o volume de extrato enzimático e o tempo de hidrólise. Esse cultivo produziu as seguintes atividades enzimáticas: 723 U gss-1 de endoglucanases, 2024 U gss-1 de xilanase, 12,6 U gss-1 de FPU e 41 U gss-1 de ?-glucosidase. Os resultados da aplicação dessas enzimas na hidrólise indicaram como ótimos 7,0 ml de extrato enzimático (4,2 FPU) e 6 horas para BIN e BOU. As melhores conversões de celulose-glicose foram obtidas para a BOU, atingindo 32,1 % a 65 ºC. Em conclusão, a produção de enzimas no biorreator de leito compactado foi eficiente e o pré-tratamento BOU melhorou a hidrólise da biomassa, aumentando a eficiência de conversão de celulose em glicose.Downloads
Referências
Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Production of multiple xylanilytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technology, 98(3), 504-510. doi: 10.1016/j.biortech.2006.02.009
Bailey, M. J., Peterbiely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257-270. doi: 10.1016/0168-1656(92)90074-J
Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551-573. doi: 10.1016/j.pecs.2007.11.001
Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 1-19. doi: 10.3389/fenrg.2018.00141
Bi, S., Peng, L., Chen, K., & Zhu, Z. (2016). Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH. Bioresource Technology, 214, 692-699. doi: 10.1016/j.biortech. 2016.05.041
Calado, V., & Montgomery, D. (2003). Planejamento de experimentos usando o Statistic. Rio de Janeiro: E-papers Serviços Editoriais.
Canilha, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., & Silva, S. S. da. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 2012, 1-15. doi: 10.1155/2012/989572
Cantwell, B. A., Sharp, P. M., Gormley, E., & Mcconnell, D. J. (1988). Molecular cloning of bacillus b-glucanases. In J. P. Aubert, P. Beguin, & J. Millet (Eds.), Biochemistry and genetics of cellulose degradation (pp. 181-201). San Diego: Academic Press.
Casciatori, F. P., Bück, A., Thoméo, J. C., & Tsotsas, E. (2016). Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chemical Engineering Journal, 287, 103-116. doi: 10.1016/j.cej.2015.10.108
Casciatori, F. P., Casciatori, P. A., & Thoméo, J. C. (2013). Cellulase production in packed bed bioreactor by solid-state fermentation. Proceedings of the European Biomass Conference and Exhibition, Copenhagen, Dinamarca, 21st. doi: 10.5071/21stEUBCE2013-3DV.1.13
Derakhti, S., Shojaosadati, S. A., Hashemi, M., & Khajeh, K. (2012). Process parameters study of α-amylase production in a packed-bed bioreactor under solid-state fermentation with possibility of temperature monitoring. Preparative Biochemistry and Biotechnology, 42(3), 203-216. doi: 10.1080/10826068.2011. 599466
Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis biotechnology monographs. Berlin: Springer-Verlag.
Florencio, C., Badino, A. C., & Farinas, C. S. (2017). Desafios relacionados à produção e aplicação das enzimas celulolíticas na hidrólise da biomassa lignocelulósica. Química Nova, 40(9), 1082-1093. doi: 10. 21577/0100-4042.20170104
Frassatto, P. A. C., Casciatori, F. P., Thoméo, J. C., Gomes, E., Boscolo, M., & Silva, R. da. (2020). β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Conversion and Biorefinery, 1-11. doi: 10.1007/s13399-020-00608-1
Ghildyal, N. P., Gowthaman, M. K., Raghava Rao, K. S. M. S., & Karanth, N. G. (1994). Interaction of transport resistances with biochemical reaction in packed-bed solid-state fermentors: Effect of temperature gradients. Enzyme and Microbial Technology, 16(3), 253-257. doi: 10.1016/0141-0229(94) 90051-5
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. doi: 10.1351/pac198759020257
Kalogeris, E., Christakopoulos, P., Katapodis, P., Alexiou, A., Vlachou, S., Kekos, D., & Macris, B. J. (2003). Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochemistry, 38(7), 1099-1104. doi: 10.1016/S0032-9592(02)00242-X
Leite, R. S. R., Bocchini, D. A., Martins, E. S., Silva, D., Gomes, E., & Silva, R. da. (2007). Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluanson solid state fermentation. Applied Biochemistry and Biotechnology, 137(1-12), 281-288. doi: 10.1007/s12010-007-9058-y
Liu, C., Suna, R., Qin, M., Zhang, A., Rena, J., Xub, F.,… Wu, S. (2007). Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Industrial Crops and Products, 26(2), 212-219. doi: 10.1016/j.indcrop.2007.03.007
Lopes, A. M., Ferreira, E. X., Fº., & Moreira, L. R. S. (2018). An update on enzymatic cocktails for lignocellulose breakdown. Journal of Applied Microbiology, 125(3), 632-645. doi: 10.1111/jam.13923
Manan, M. A., & Webb, C. (2017). Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology & Bioengineering, 4(1), 511-532. doi: 10.15406/jabb. 2017.04.00094
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030
Mishima, D., Tateda, M., Ike, M., & Fujita, M. (2006). Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technology, 97(16), 2166-2172. doi: 10.1016/j.biortech.2005.09.029
Mitchell, D. A., Krieger, N., & Berovic, M. (2006). Solid-state fermentation bioreactors: fundamentals, design and operation. Berlin: Springer-Verlag.
Mitchell, D. A., Pandey, A., Sangsurasak, P., & Krieger, N. (1999). Scale-up strategies for packed bed bioreactors for solid state fermentation. Process Biochemistry, 35(1-2), 167-178. doi: 10.1016/S0032-9592(99)00048-5
Molina, G., Contesini, F. J., Melo, C. R. R. de, Sato, H. H., & Pastore, G. M. (2016). β-Glucosidase from Aspergillus. In V. K. Gupta (Eds.), New and future developments in microbial biotechnology and bioengineering: aspergillus system properties and applications (pp. 155-169). Amsterdã: Elsevier.
Montgomery, D. C. (2001). Design and analysis of experiments. New York: John Wiley & Sons.
Moretti, M. M. S., Bocchini-Martins, D. A., Silva, R. da, Rodrigues, A., Sette, L. D., & Gomes, E. (2012). Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology, 43(3), 1062-1071. doi: 10.1590/S1517-83822012000300032
Oliveira Rodrigues, P. de, Pereira, J. C., Queiroz, D., Gurgel, L. V. A., Pasquini, D., & Baffi, M. A. (2017). Synergistic action of an Aspergillus (hemi-) cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 109(1), 173-181. doi: 10.1016/j.indcrop.2017.08.031
Pereira, J. C., Travaini, R., Marques, N. P., Bolado-Rodríguez, S., & Martins, D. A. B. (2016). Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and etanol production. Bioresource Technology, 204, 122-129. doi: 10.1016/j. biortech.2015.12.064
Perez, C. L., Casciatori, F. P., & Thoméo, J. C. (2019). Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: the case of cellulolytic enzymes production by a thermophilic fungus. Chemical Engineering Journal, 361, 1142-1151. doi: 10.1016/j.cej.2018.12.169
Perrone, O. M., Colombari, F. M., Rossi, J. S., Moretti, M. M. S., Bordignon, S. E., Nunes, C. C. C., Silva, R. da. (2016). Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresource Technology, 218, 69-76. doi: 10.1016/j.biortech.2016.06.072
Plácido, J., & Capareda, S. (2014). Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresources and Bioprocessing, 1(23), 1-9. doi: 10.1186/s40643-014-0023-7
Sandgren, M., Stahlberg, J., & Mitchinson, C. (2005). Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Progress in Biophysics and Molecular Biology, 89(3), 246-291. doi: 10.1016/j.pbiomolbio.2004.11.002
Silva, R. da, Lago, E. S., Merheb, C. W., Macchione, M. M., & Park, Y. K. (2005). Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus Miehe. Brazilian Journal of Microbiology, 36(3), 235-241. doi: 10.1590/S1517-83822005000300006
Sluiter, A., Hames, B., Ruiz, R. O., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL, TP-510-42618). Biomass Anal. Golden, CO: National Renewable Energy Laboratory Technol. (Recuperado de https://www.nrel.gov/biomass/pdfs/42618.pdf
Soni, R., Nazir, A., Chadha B. S., & Saini, H. S. (2008). Novel sources of fungal cellulases for efficient deinking of composite paper wast. Bioresources, 3(1), 234-246.
Souza-Corrêa, J. A., Oliveira, C., Nascimento, V. M., Wolf, L. D., Gómez, E. O., Rocha, G. J. M., & Amorim, J. (2014). Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of biomass particle size in the ozonation process. Applied Biochemistry and Biotechnology, 172(3), 1663-1672. doi: 10.1007/s12010-013-0609-0
Souza-Corrêa, J. A., Ridenti, M. A., Oliveira, C., Araújo, S. R., & Amorim, J. (2013). Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries. The Journal of Physical Chemistry, 117(11), 3110-3119. doi: 10.1021/jp3121879
Sun, J. X., Sun, R., Sun, X. F., & Su, Y. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydrate Research, 339(2), 291-300. doi: 10.1016/j.carres.2003.10.027
Travaini, R., Otero, M. D. M., Coca, M., Silva, R. da, & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332-339. doi: 10.1016/j.biortech.2013.01.133
Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresource Technology, 102(14), 7119-7123. doi: 10.1016/j. biortech.2011.04.045
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. doi: 10.1016/j.fuel.2006.12.013
Zanelato, A. I., Shiota, V. M., Gomes, E., & Thoméo, J. C. (2012). Endoglucanase production with the newly isolated Myceliophthora sp. I-1D3b in a packed bed solid state fermentor. Brazilian Journal of Microbiology, 43(4), 1536-1544. doi: 10.1590/S1517-83822012000400038
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.