Cotesia flavipes Cameron (Hymenoptera: Braconidae) altera nutrientes na hemolinfa, corpo gorduroso e citoquímica de hemócitos em Diatraea flavipennella Box (Lepidoptera: Crambidae)
DOI:
https://doi.org/10.5433/1679-0359.2019v40n2p539Palavras-chave:
Broca da cana-de-açúcar, Corpo gorduroso, Hemócito, Hemolinfa, Parasitoide.Resumo
A interação nutricional e fisiológica depende da história evolutiva da interação entre hospedeiro e parasitoide, sendo a regulação do hospedeiro pelo parasitoide espécie-específica. Cotesia flavipes Cameron foi introduzida no Brasil na década de 70 para o controle do complexo de brocas Diatraea, contudo Diatraea flavipennella Box é restrita ao Brasil. Assim, este estudo investigou as possíveis alterações nutricionais da hemolinfa e do corpo gorduroso, e citoquímica dos hemócitos de D. flavipennella parasitada por C. flavipes. Os níveis de nutrientes foram quantificados por meio de testes colorimétricos da hemolinfa e corpo gorduroso. Já os níveis de glicanos ácidos, mucina e lipídeo foram investigados, somente nos hemócitos, utilizando técnicas citoquímicas. Adicionalmente, cortes histológicos da lagarta parasitada e não parasitada foram preparados para observar alterações no volume e na presença de glicogênio no corpo gorduroso. Os resultados mostraram uma redução na concentração de proteína e lipídeos na hemolinfa de lagartas parasitadas. O parasitismo reduziu os níveis de carboidratos totais, glicogênio e proteína no corpo gorduroso e consumiu quase todo o corpo gorduroso perivisceral. Parasitismo alterou a citoquímica dos hemócitos, reduzindo glicanos ácidos em prohemócitos e oenocitóides, mucina em plasmatócitos e granulócitos, e lipídeos em adipohemócitos, granulócitos e prohemócitos. Concluímos que o parasitoide leva a diferentes mudanças na hemolinfa e corpo gorduroso de D. flavipennella, altera a citoquímica de hemócitos e causa redução significativa no tecido de reserva. Os resultados deste estudo contribuem para consolidar o uso de C. flavipes em programas de controle biológico de D. flavipennella na cultura da cana-de-açúcar.Downloads
Referências
ARAÚJO, J. R.; BOTELHO, P. S. M.; ARAÚJO, S. M. S. S.; ALMEIDA, L. C.; DEGASPARI. N. Nova dieta artificial para criação da Diatraea saccharalis (Fabr.). Saccharum. Revista de Tecnologia Indústria Açúcar e Álcool, São Paulo, v. 36, n. 2, p. 45-48, 1985.
BAE, S.; KIM, Y. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comparative Biochemistry and Physiology Part B, Oxford, v. 38, n. 1, p. 39-44, 2004.
BECKAGE, N. E.; GELMAN, D. B. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annual Review of Entomology, Stanford, v. 49, p. 299-330, 2004.
BECKAGE, N. E.; KANOST, M. R. Effects of parasitism by the braconid wasp Cotesia congregata on host hemolymph proteins of the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, Oxford, v. 23, n. 5, p. 643-653, 1993.
BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, Orlando, v. 72, n. 1-2, p. 248-254, 1976.
CAMPOS-FARINHA, A. E. C.; CHAUD-NETTO, J.; GOBBI, N. Biologia reprodutiva de Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). IV. Discriminação entre lagartas parasitadas e não parasitadas de Diatraea saccharalis Fabricius (Lepidoptera: Pyralidae), tempo de desenvolvimento e razão sexual dos parasitoides. Arquivos do Instituto Biológico, São Paulo, v. 67, n. 2, p. 229-234, 2000.
CHAPMAN, R. F. The insects: structure and function. 4ht ed. Cambridge: Cambridge, University Press, 2013. 770 p.
DEPLANCKE, B.; GASKINS, H. R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. American Journal of Clinical Nutrition, Rockville, v. 73, n. 6, p. 1131-1114, 2001.
EDWARDS, J. P.; WEAVER, R. J.; MARRIS, G. C. Endocrine changes in lepidopteran larvae: Potencial challenges to parasitoid development and survival. In: EDWARDS, J. P.; WEAVER, R. J. (Ed.). Endocrine interactions of insect parasites and pathogens. Oxford: BIOS Scientific Publishers, 2001. p. 1-32.
ESPAGNE, E.; DUPUY, C.; HUGUET, E.; CATTOLICO, L.; PROVOST, B.; MARTINS, N.; POIRIE, M.; PERIQUET, G.; DREZEN, J. M. Genome sequence of a polydnavirus: Insights into symbiotic virus evolution. Science, Washington, v. 306, n. 5694, p. 286-289, 2004.
FALABELLA, P.; RIVIELLO, P.; DE STRADIS, M. L.; VARRICCHIO, P.; GRIMALDI, A.; EGUILEOR, M.; GRAZIANI, F; GIGLIOTTI, S.; PENNACCHIO, F. Aphidius ervi teratocytes release in extracellular enolase. Insect Biochemistry and Molecular Biology, Oxford, v. 39, n. 11, p. 801-813, 2009.
FREITAS, M. R. T.; FONSECA, A. P. P.; SILVA, E. L.; MENDONÇA, A. L.; SILVA, C. E.; MENDONÇA, A. L.; NASCIMENTO, R. R.; SANT’ANA, A. E. G. The predominance of Diatraea flavipennella (Lepidoptera: Crambidae) in sugar cane fields in the state of Alagoas, Brazil. Florida Entomologist, Lutz, v. 89, n. 4, p. 539-540, 2006.
GARRETT, R. H.; GRISHAM, C. M. Biochemistry. Orlando: Saunders College Publishing, 1999. 1154 p.
GOPALAPILLAI, R.; KADONO-OKUDA, K.; OKUDA, T. Molecular cloning and analysis of a novel teratocyte-specific carboxylesterase from the parasitic wasp Dinocampus coccinellae. Insect Biochemistry and Molecular Biology, Oxford, v. 35, n. 10, p. 1171-1180, 2005.
GULLAN, P. J.; CRANSTON, P. S. Os insetos: um resumo de entomologia. São Paulo: Roca, 2007. 440 p.
HENSLEY, S. D.; HAMMOND JÚNIOR, A. M. Laboratory technique for rearing the sugarcane borer on an artificial diet. Journal of Economic Entomology, Lanham, v. 61, n. 6, p. 1742-1743, 1968.
HILLYER, J. F.; CHRISTENSEN, B. M. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and Cell Biology, Berlin, v. 117, n. 5, p. 431-440, 2002.
JERVIS, M. A.; ELLERS, J.; HARVEY, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology, Stanford, v. 52, p. 361-385, 2008.
JUNQUEIRA, L. C. U.; JUNQUEIRA, L. M. M. S. Técnicas básicas de citologia e histologia. São Paulo: Guanabara Koogan, 1983. 123 p.
KAESLIN, M.; PFISTER-WILHELM, R.; MOLINA, D.; LANZREIN, B. Changes in the haemolymph proteome of Spodoptera littoralis induced by the parasitoid Chelonus inanitus or its polydnavirus and physiological implications. Journal of Insect Physiology, Oxford, v. 51, n. 9, p. 975-988, 2005.
KANOST, M. R.; KAWOOYA, J. K.; LAW, J. H.; RYAN, R. O.; HEUSDEN, M. C. V.; ZIEGLER, R. Insect haemolymph proteins. Advances in Insect Physiology, San Diego, v. 22, p. 299-396, 1990.
KORAYEM, A. M.; FABBRI, M.; TAKAHASHI, K.; SCHERFER, C.; LINDGREN, M.; SCHMIDT, O.; UEDA, R.; DUSHAY, M. S.; THEOPOLD, U. A Drosophila salivary gland mucin is also expressed in immune tissues: evidence for a function in coagulation and the entrapment of bacteria. Insect Biochemistry and Molecular Biology, Oxford, v. 34, n. 12, p. 1297-1304, 2004.
KROEMER, J. A.; WEBB, B. A. Polydnavirus genes and genomes:emerging gene families and new insights into polydnavirus replication. Annual Review of Entomology, Stanford, v. 49, p. 431-456, 2004.
LANZREIN, B.; PFISTER-WILHELM, R.; VON NIEDERHAÜSERN, F. Effects of an egg-larval parasitoid and its polydnavirus on development and the endocrine system of the host. In: EDWARDS, J. P.; WEAVER, R. (Ed.). Endocrine interactions of insect parasites and pathogens. Oxford: BIOS Scientific Publishers, 2001. p. 95-109.
LEE, S.; BASIO, N. A.; KIM, D. S.; KIM, Y. Proteomic analysis of parasitization by Cotesia plutellae against Diamondback Moth, Plutella xylostella. Journal of Asia-Pacific Entomology, Suwon, v. 8, n. 1, p. 53-60, 2005.
LOCKEY, K. H. Lipids of the insect cuticle-origin, composition and function. Comparative Biochemistry and Physiology Part B, Oxford, v. 89, n. 4, p. 595-645, 1988.
MENDONÇA, A. F. Guia das principais pragas da cana-de-açúcar na América Latina e Caribe. In: MENDONÇA, A. F. (Ed.). Pragas da cana-de-açúcar. Maceió: Insetos & Cia, 1996. p. 3-48.
MENDONÇA, A. F.; RISCO, S. H.; COSTA, J. M. B. Introduction and rearing of Apanteles flavipes Cameron (Hymenoptera: Braconidae) in Brazil. International Society of Sugar Cane Technologists- ISSCT, São Paulo, v. 1, p. 703-710, 1977.
MULLEN, L.; GOLDSWORTHY, G. Changes in lipophorins are related to the activation of phenoloxidase in the haemolymph of Locusta migratoria in response to injection of immunogens. Insect Biochemistry and Molecular Biology, Oxford, v. 33, n. 7, p. 661-670, 2003.
MYERS, B. M.; FREDENBURGH, J. L.; GRIZZLE, W. E. Carbohydrates. In: BANCROFT, J. D.; GAMBLE, M. (Ed.). Theory and practice of histological techniques. Philadelphia: Elselvier, 2008. p. 161-186.
NAKAMATSU, Y.; GYOTOKU, Y.; TANAKA T. The endoparasitoide Cotesia kariyai (Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus. Journal of Insect Physiology, Oxford, v. 47, n. 6, p. 573-584, 2001.
NAKAMATSU, Y.; FUJII, S.; TANAKA, T. Larvae of an endoparasitoid, Cotesia kariyai (Hymenoptera: Braconidae), feed on the host fat body directly in the second stadium with help of teratocytes. Journal of Insect Physiology, Oxford, v. 48, n. 11, p. 1041-1052, 2002.
PASSOS, E. M.; WANDERLEY-TEIXEIRA, V.; MARQUES, E. J.; TEIXEIRA, A. A. C.; BRAYNER, F. A. Cotesia flavipes (CAM) (Hymenoptera: Braconidae) supresses immune respnses in Diatraea flavipennella (BOX) (Lepidoptera: Crambidae). Anais da Academia Brasileira de Ciências, Rio de Janeiro, v. 86, n. 4, p. 2013-2024, 2014.
PECH, L. L.; STRAND, M. R. Granular cells are required for encapsulation of foreign targets by insect haemocytes. Journal of Cell Science, London, v. 109, n. 8, p. 2053-2060, 1996.
PINHEIRO, D. O.; ROSSI, G. D.; CÔNSOLI, F. L. External morphology of Cotesia flavipes (Hymenoptera: Braconidae) during larval development. Revista Brasileira de Zoologia, São Paulo, v. 27, n. 6, p. 986-992, 2010.
QIN, Q. L.; GONG, H.; DING, T. Two collagenases are secreted by teratocytes from Microplitis mediator (Hymenoptera: Braconidae) cultured in vitro. Journal of Invertebrate Pathology, San Diego, v. 76, n. 1, p. 79-80, 2000.
RAHMAN, M. M.; MA, G.; ROBERTS, H. L. S.; SCHMIDT, O. Cell-free immune reactions in insects. Journal of Insect Physiology, Oxford, v. 52, n. 7, p. 754-762, 2006.
RIBEIRO, C.; BREHELIN, M. Insect haemocytes: what type of cell is that? Journal of Insect Physiology, Oxford, v. 52, n. 5, p. 417-429, 2006.
ROE, J. H. The determination of sugar in blood fluid and spinal fluid with anthrone reagent. Journal Biological Chemistry, Baltimore, v. 212, n. 1, p. 335-343, 1955.
SALVADOR, G.; CÔNSOLI, F. L. Changes in the hemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Biological Control, Orlando, v. 45, n. 1, p. 103-110, 2008.
SATISTICAL ANALYSES SYSTEM - SAS. SAS/STAT. User’s guide: statistics. version 8.02. Cary: Editora, 2001. v. 2.
SATO, Y.; TAGAWA, J.; HIDAKA, T. Effects of the gregarious parasitoids Apanteles rufricus and A. Kariyai on host growth and development. Journal of Insect Physiology, Oxford, v. 32, n. 4, p. 281-286, 1986.
SHELBY, K. S.; WEBB, B. A. Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochemistry and Molecular Biology, Oxford, v. 27, n. 3, p. 263-270, 1997.
STANLEY, D. Prostaglandins and other eicosanoids in insects: biological significance. Annual Review of Entomology, Stanford, v. 51, p. 25-44, 2006.
THOMPSON, S. N. Trehalose: the insect blood sugar. Advances in Insect Physiology, San Diego, v. 31, p. 205-285, 2003.
VAN HANDEL, E. Rapid determination of total lipids in mosquitoes. Journal of the American Mosquito Control Association, Fresno, v. 1, n. 3, p. 302-304, 1985.
VINSON, S. B.; PENNACCHIO, F.; CÔNSOLI, F. L. The parasitoid-host endocrine interaction from a nutritional perspective. In: EDWARDS, J. P.; WEAVER, R. J. (Ed.). Endocrine interactions of insect parasites and pathogens. Oxford: BIOS Scientific Publishers, 2001. p. 187-206.
WANG, Z.; HAUNERLAND, N. H. Ultrastructural study of storage protein granules in fat body of the corn earworm, Heliothis zea. Journal of Insect Physiology, Oxford, v. 37, n. 5, p. 353-364, 1991.
WHITFIELD, J. B. Phylogeny and evolution of host-parasitid interactions in Hymenoptera. Annual Review of Entomology, Stanford, v. 43, p. 129-151, 1998.
WHITTEN, M. M. A.; TEW, I. F.; LEE, B. L.; RATCLIFFE, N. A. A novel role for an insect apolipoprotein (apolipophorin III) in {beta}-1,3-glucan pattern recognition and cellular encapsulation reactions. Journal of Immunology, Baltimore, v. 172, n. 4, p. 2177-2185, 2004.
ZHANG, Z.; DAHLMAN, D. L.; JÄRLFORS, U. E. Effect of Micropplitis croceipes teratocytes on host hemolymph protein content and fat body proliferation. Journal of Insect Physiology, Oxford, v. 43, n. 6, p. 577-585, 1997.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.