Application of chitosan in the cultivation of colored fiber cotton ‘BRS Jade’ under water restriction
DOI:
https://doi.org/10.5433/1679-0359.2024v45n3p765Keywords:
Gossypium hirsutum L, Acclimation, Biostimulant, Abiotic stress.Abstract
In the semi-arid region of Northeastern Brazil, temporal and spatial variations in rainfall are common, resulting in water limitations that significantly impact production, especially of cotton. In this context, chitosan may serve as a strategy to minimize the effects of water deficits by enhancing water and nutrient absorption. This study aimed to evaluate the effectiveness of different concentrations of chitosan as a mitigator of water restriction in the cultivation of the naturally colored fiber cotton variety 'BRS Jade'. The plants were cultivated in drainage lysimeters under greenhouse conditions. A completely randomized design was implemented using a 2 × 4 factorial arrangement, which included two levels of irrigation (100% and 50% of the water requirement of the crop) and four chitosan concentrations (0.0, 0.25, 0.50, and 0.75 g L-1), with three replications and one plant per plot. Water restriction at 50% of the required amount reduced the relative water content, the synthesis of photosynthetic pigments, and seed cotton weight. However, foliar application of chitosan at concentrations between 0.25 and 0.50 g L-1 alleviated the detrimental effects of water restriction on the chlorophyll b content; carotenoid content; stem diameter; leaf area; 100-seed weight; average boll weight; seed cotton weight; total boll dry biomass; and dry biomass of stems, leaves, and shoots of the 'BRS Jade' colored fiber cotton plant.
Downloads
References
Almeida, L. G., Silva, E. M. da, Magalhães, P. C., Karam, D., Reis, C. O. dos, Gomes, C. C.., & Marques, D. M. (2020). Root system in maize plants cultivated under water deficit and application of chitosan. Revista Brasileira de Milho e Sorgo, 19(1), e1131. doi: 10.18512/1980-6477/rbms 2020.v19.e1131 DOI: https://doi.org/10.18512/1980-6477/rbms.v19n1p11
Araújo, W. P., Pereira, J. R., Zonta, J. H., Guerra, H. O. C., Cordão, M. A., & Lima, R. F. (2019). Production components and water efficiency of upland cotton cultivars under water deficit strategies. African Journal of Agricultural Research, 14(20), 887-896. doi: 10.5897/AJAR2019.13907
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in beta vulgaris. Plant Physiology, 24(1), 1-15. doi: 10.1104/pp.24.1.1 DOI: https://doi.org/10.1104/pp.24.1.1
Barbosa, J. L., Nobre, R. G., Souza, L. de P., Veloso, L. L. de S., Silva, E. L. da., & Guedes, M. A. (2019). Crescimento de algodoeiro colorido cv. BRS topázio em solos com distintas salinidades e adubação orgânica. Revista de Ciências Agrárias, 42(1), 201-210. doi: 10.19084/RCA17294
Bistgani, Z. E., Siadat, S. A., Bakhshandeh, A., Pirbalouti, A. G., & Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of thymus daenensis celak. The Crop Journal, 5(5), 407-415. doi: 10.1016/j.cj.2017.04.003 DOI: https://doi.org/10.1016/j.cj.2017.04.003
Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., & Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of Food Science, 67(2), 1162-1169. doi: 10.1111/j.1365-2621.2002.tb09470.x DOI: https://doi.org/10.1111/j.1365-2621.2002.tb09470.x
Cordão, M. A., Araújo, W. P., Pereira, J. R., Zonta, J. H., Lima, R. F. de, & Ferreira, F. N. (2018). Cultivares de algodoeiro herbáceo sob déficit hídrico aplicado em fases fenológicas. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(3), 313-321. doi: 10.18378/rvads.v13i3.5933 DOI: https://doi.org/10.18378/rvads.v13i3.5933
Farias, F. J. C., Morello, C. de L., Pedrosa, M. B., Suassuna, N. D., Silva, J. L. da, Fº., Carvalho, L. P. de, & Ribeiro, J. L. (2017). BRS jade: nova cultivar de algodão colorido de dupla aptidão para o cerrado baiano e para o semiárido nordestino. Anais do Congresso Brasileiro de Algodão, Maceió, AL, Brasil, 11.
Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(1), 529-535. doi: 10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450
Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi: 10.1016/S0304-4165(89)80016-9 DOI: https://doi.org/10.1016/S0304-4165(89)80016-9
Govaerts, B., Sayre, K. D., Lichter, K., Dendooven, L., & Deckers, J. (2007). Influence of permanent planting in high bed and residue management on physical and chemical soil quality in rainfed corn/wheat systems. Plant and Soil, 291(1), 39-54. doi: 10.1007/s11104-006-9172-6 DOI: https://doi.org/10.1007/s11104-006-9172-6
Grimes, D. W., & Carter, L. M. (1969). A linear rule for direct nondestructive leaf area measurements. Agronomy Journal, 61(3), 477-479. doi: 10.2134/agronj1969.00021962006100030048x DOI: https://doi.org/10.2134/agronj1969.00021962006100030048x
Hair, F. J., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). In A. S., Sant’Anna (Trad.), Análise multivariada de dados (6a ed.). Porto Alegre.
Hemantaranjan, A., Katiyar, D., Singh, B., & Bhanu, A. N. (2014). A future perspective in crop protection: chitosan and its oligosaccharides. Advances in Plants & Agriculture Research, 1(1), 1-8. doi: 10.15406/apar.2014.01.00006 DOI: https://doi.org/10.15406/apar.2014.01.00006
Hotelling, H., Eisenhart, C., Hastay, M. W., & Wallis, W. A. (1947). Multivariate quality control. Techniques of Statistical Analysis. John Wiley & Sons.
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141-151. doi: 10.1177/001316446002000116 DOI: https://doi.org/10.1177/001316446002000116
Kalaji, M. H., & Guo, P. (2008). Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Photochemistry Research Progress, 29(12), 439-463.
Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1-9. doi: 10.1007/s40502-015-0139-6 DOI: https://doi.org/10.1007/s40502-015-0139-6
Koch, G., Rolland, G., Dauzat, M., Bédiée, A., Baldazzi, V., Bertin, N., Guédon, Y., & Granier, C. (2019). Leaf production and expansion: a generalized response to drought stresses from cells to whole leaf biomass a case study in the tomato compound leaf. Plants, 8(10), 1-17. doi: 10.3390/plants8100409 DOI: https://doi.org/10.3390/plants8100409
Lacerda, C. N. de, Lima, G. S. de, Soares, L. A. dos A., Fátima, R. T. de, Gheyi, H. R., & Azevedo, C. A. V. de. (2022). Morphophysiology and production of guava as a function of water salinity and salicylic acid. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(6), 451-458. doi: 10.1590/1807-1929/agriambi.v26n6p451-458. DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n6p451-458
Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, H. Hotelling (Eds.), Essays in Honor of Harold Hotelling. (p. 278-292). Stanford University Press.
Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., & Andrade, E. M. G. (2018). Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Revista Caatinga, 31(1), 151-160. doi: 10.1590/1983-21252018v31n118rc DOI: https://doi.org/10.1590/1983-21252018v31n118rc
Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., Nobre, R. G., Pinheiro, F. W. A., & Silva, A. A. R. da. (2017). Gas exchanges and production of colored cotton under salt sress and nitrogen fertilization. Bioscience Journal, 33(6), 1495-1505. doi: 10.14393/BJ-v33n6a2017-37109 DOI: https://doi.org/10.14393/BJ-v33n6a2017-37109
Magalhães, I. D., Melo, A. S. de, Fernandes, P. D., Queiroz, M. F. de, Arriel, N. H. C., Ferraz, R. L. de S., Suassuna, J. F., Maia, S. de O., Jr., Medeiros, A. de S., Viegas, P. R. A., Costa, F. da S., & Costa, P. da S. (2020). Gas exchange, photochemical efficiency, and yield of jatropha curcas irrigated with saline water. Australian Journal of Crop Science, 14(5), 802-809. doi: 10.3316/informit.260507589787346 DOI: https://doi.org/10.21475/ajcs.20.14.05.p2247
Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7), e996. doi: 10.3390/ijms17070996 DOI: https://doi.org/10.3390/ijms17070996
Maniçoba, R. M., Espínola Sobrinho, J., Zonta, J. H., Cavalcante, E. G. Jr., Oliveira, A. K. S. de, & Freitas, E. A. da S. (2021). Resposta do algodoeiro à supressão hídrica em diferentes fases fenológicas no semiárido brasileiro. Irriga, 26(1), 123-133. doi: 10.15809/irriga.2021v26n1p123-133 DOI: https://doi.org/10.15809/irriga.2021v26n1p123-133
Marques, R. F., Pinheiro, G. H. R., Araújo, P. P. dos S., Souza, R. M. de, & Marchi, S. R. de. (2020). Efeito de sub doses de 2,4-d sal colina na eficiência quântica do fotossistema II do algodoeiro. Colloquium Agrariae, 16(2), 60-71. doi: 10.5747/ca.2020.v16.n2.a359 DOI: https://doi.org/10.5747/ca.2020.v16.n2.a359
Medeiros, A. de S., Maia, S. de O., Jr., Gonzaga, G. B. M., Santos, T. C. dos, Queiroz, M. M. F. de, Araújo, R. A. de, Neto, Magalhães, I. D., Ferraz, R. L. de S., Costa, P. da S., Andrade, J. R. de, & Pereira, M. de O. (2019). Growth of okra under nitrogen rates and wastewater in the brazilian semiarid region. Journal of Agricultural Science, 11(5), 408-418. doi: 10.5539/jas.v11n5p408 DOI: https://doi.org/10.5539/jas.v11n5p408
Moenne, A., & González, A. (2021). Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: a historical perspective. Carbohydrate Research, 503(1), e108298. doi: 10.1016/j.carres.2021.108298 DOI: https://doi.org/10.1016/j.carres.2021.108298
Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira, Métodos de pesquisa em fertilidade do solo (pp. 189-253). Brasília.
Park, S. Y., Lee, B. I., Jung, S. T., & Park, H. J. (2001). Biopolymer composite films based on κ-carrageenan and chitosan. Materials Research Bulletin, 36(3-4), 511-519. doi: 10.1016/S0025-5408(01)00545-1 DOI: https://doi.org/10.1016/S0025-5408(01)00545-1
Peripolli, M., Dornelles, S. H., Lopes, S. J., Tabaldi, L. A., Trivisiol, V. S., & Rubert, J. (2021). Application of biostimulants in tomato subjected to water deficit: physiological, enzymatic and production responses. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(2), 90-95. doi: 10.1590/1807-1929/agriambi.v25n2p90-95 DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n2p90-95
Pirbalouti, A. G., Malekpoor, F., Salimi, A., & Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae, 201(15), 114-122. doi: 10.1016/j.scienta.2017.01. DOI: https://doi.org/10.1016/j.scienta.2017.01.031
Rizzi, V., Fini, P., Semeraro, P., & Cosna, P. (2016). Detailed investigation of ROS arisen from chlorophyll a/chitosan based-biofilm. Colloids Surfaces B-Biointerfaces, 142(1), 239-247. doi: 10.1016/j.colsurfb.2016.02.062 DOI: https://doi.org/10.1016/j.colsurfb.2016.02.062
Scotti-Campos, P., Pham-Thi, A. T., Semedo, J. N., Pais, I. P., Ramalho, J. C., & Céu Matos, M. do. (2013). Physiological responses and membrane integrity in three Vigna genotypes with contrasting drought tolerance. Emirates Journal of Food and Agriculture, 25(13)1002-1013. doi: 10.9755/ejfa.v25i12.16733 DOI: https://doi.org/10.9755/ejfa.v25i12.16733
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611. doi: 10.2307/2333709 DOI: https://doi.org/10.1093/biomet/52.3-4.591
Silva, M. de A., Jifon, J. L., Silva, J. A. G. da, & Sharma, V. (2007). Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, 19(1), 193-201. doi: 10.1590/S1677-04202007000300003 DOI: https://doi.org/10.1590/S1677-04202007000300003
Silveira, R. N. C. M., Peixoto, F. da S., Costa, R. N. T., & Cavalcante, I. N. (2019). Efeitos da seca em perímetros irrigados no semiárido brasileiro. Anuário do Instituto de Geociências, 41(2), 268-275. doi: 10.11137/2018_2_268_275 DOI: https://doi.org/10.11137/2018_2_268_275
Soares, L. A. dos A., Dias, K. M. M., Nascimento, H. M., Lima, G. S. de, Oliveira, K. J. A. de, & Silva, S. S. da. (2020). Estratégias de manejo do déficit hídrico em fases fenológicas do algodoeiro colorido. Irriga, 25(4), 656-662. doi: 10.15809/irriga.2020v25n4p656-662 DOI: https://doi.org/10.15809/irriga.2020v25n4p656-662
Soares, L. A. dos A., Felix, C. M., Lima, G. S. de, Gheyi, H. R., Silva, L. de A., & Fernandes, P. D. (2023). Gas exchange, growth, and production of cotton genotypes under water deficit in phenological stages. Revista Caatinga, 36(1), 145-157. doi: 10.1590/1983-21252023v36n116rc DOI: https://doi.org/10.1590/1983-21252023v36n116rc
Soares, L. A. dos A., Fernandes, P. D., Lima, G. S. de, Suassuna, J. F., & Pereira, R. F. (2018). Gas exchanges and production of colored cotton irrigated with saline water at different phenological stages. Revista Ciência Agronômica, 49(2), 239-248. doi: 10.5935/1806-6690.20180027 DOI: https://doi.org/10.5935/1806-6690.20180027
Statsoft, I. N. C. (2004). Programa computacional Statistica 7.0. E. A. U.
Tavares, V. C. de A., Paulino, I. R., & Silva, D. G. da. (2019). Desertificação, mudanças climáticas e secas no semiárido brasileiro: uma revisão bibliográfica. Geosul, 34(70), 385-405. doi: 10.5007/2177-5230.2019v34n70p385 DOI: https://doi.org/10.5007/2177-5230.2019v34n70p385
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3a ed.). EMBRAPA solos.
Wanderley, J. A. C., Azevedo, C. A. V. de, Brito, M. E. B., Ferreira, F. N., Cordão, M. A., & Lima, R. F. de (2022). Gas exchange in yellow passion fruit under irrigation water salinity and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(2), 135-141. doi: 10.1590/1807-1929/agriambi.v26n2p135-141 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n2p135-141
Weatherley, P. (1950). Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytologist, 49(1), 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x DOI: https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.