Deoxynivalenol induces ovarian apoptosis in peripubertal rats
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1621Keywords:
Apoptosis, Deoxynivalenol, Follicular integrity, Ovary, Rat.Abstract
Puberty, governed by the endocrine system, marks the onset of reproductive functions in animals and humans through a series of physiological and biological transformations. Although the mycotoxin DON can disrupt hormonal balance and cause reproductive abnormalities, its impact on puberty-associated reproductive changes remains understudied. Considering the increased exposure of children and adolescents to DON, our study aimed to elucidate its influence on follicular integrity and the expression of pro-apoptotic proteins (BAX and Caspase-3) and anti-apoptotic protein (BCL-2) in juvenile rat ovarian tissue. We divided ten 28-day-old prepubertal Wistar rats into two dietary groups for 28 days: a control group with a mycotoxin-free diet and a DON group with a diet containing 10 mg DON/Kg. After the experiment, ovaries and uterus weights were recorded, and the ovaries underwent morphometric and immunohistochemical analysis. DON exposure led to significant reductions in both ovarian and uterine weights. Although DON intake did not change the number of ovarian follicles across developmental stages, we observed an increased expression of BAX and Caspase-3 and a decreased BCL-2 expression in most follicular stages and corpora lutea. In summary, DON exposure during puberty can interfere with apoptotic processes in diverse ovarian cell populations during early adulthood.
Downloads
References
Alm, H., Greising, T., Brüssow, K. P., Torner, H., & Tiemann, U. (2002). The influence of the mycotoxins deoxynivalenol and zearalenol on in vitro maturation of pig oocytes and in vitro culture of pig zygotes. Toxicology In Vitro, 16(6), 643-648. doi: 10.1016/s0887-2333(02)00059-0 DOI: https://doi.org/10.1016/S0887-2333(02)00059-0
Andretta, I., Kipper, M., Lehnen, C. R., Hauschild, L., Vale, M. M., & Lovatto, P. A. (2012). Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal, 6(9), 1476-1482. doi: 10.1017/s1751731111002278 DOI: https://doi.org/10.1017/S1751731111002278
Bracarense, A. P. F., Basso, K. M., Silva, E. O. da, Payros, D., & Oswald, I. P. (2017). Deoxynivalenol in the liver and lymphoid organs of rats: effects of dose and duration on immunohistological changes. World Mycotoxin Journal, 10(1), 89-96. doi: 10.3920/WMJ2016.2094 DOI: https://doi.org/10.3920/WMJ2016.2094
Chuffa, L. G., Alves, M. S., Martinez, M., Camargo, I. C., Pinheiro, P. F., Domeniconi, R. F., Júnior, L. A. L., & Martinez, F. E. (2016). Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocrine-Related Cancer, 23(2), 65-76. doi: 10.1530/erc-15-0463 DOI: https://doi.org/10.1530/ERC-15-0463
Clark, E. S., Flannery, B. M., & Pestka, J. J. (2015). Murine anorectic response to deoxynivalenol (vomitoxin) is sex-dependent. Toxins, 7(8), 2845-2859. doi: 10.3390/toxins7082845 DOI: https://doi.org/10.3390/toxins7082845
Da Broi, M. G., Giorgi, V. S. I., Wang, F., Keefe, D. L., Albertini, D., Navarro, P. A. (2018). Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. Journal of Assisted Reproduction and Genetics, 35(5), 735-751. doi: 10.1007/s10815-018-1143-3 DOI: https://doi.org/10.1007/s10815-018-1143-3
Dai, Y., Xie, H., & Xu, Y. (2017). Evaluation of deoxynivalenol-induced toxic effects on mouse endometrial stromal cells: cell apoptosis and cell cycle. Biochemical and Biophysical Research Communications, 483(1), 572-577. doi: 10.1016/j.bbrc.2016.12.103 DOI: https://doi.org/10.1016/j.bbrc.2016.12.103
De Santis, B., Debegnach, F., Miano, B., Moretti, G., Sonego, E., Chiaretti, A., Buonsenso, D., & Brera, C. (2019). Determination of deoxynivalenol biomarkers in Italian urine samples. Toxins, 11(8), 441-456. doi: 10.3390/toxins11080441 DOI: https://doi.org/10.3390/toxins11080441
Deng, C., Li, C., Zhou, S., Wang, X., Xu, H., Wang, D., Gong, Y. Y., Routledge, M. N., Zhao, Y., & Wu, Y. (2018). Risk assessment of deoxynivalenol in high-risk area of China by human biomonitoring using an improved high throughput UPLC-MS/MS method. Scientific Reports, 8(1), 3901. doi: 10.1038/s41598-018-22206-y DOI: https://doi.org/10.1038/s41598-018-22206-y
Eze, U., Routledge, M., Okonofua, F., Huntriss, J., & Gong, Y. (2018). Mycotoxin exposure and adverse reproductive health outcomes in Africa: a review. World Mycotoxin Journal, 11(3), 321-339. doi: 10.3920/WMJ2017.2261 DOI: https://doi.org/10.3920/WMJ2017.2261
Friend, D. W., Trenholm, H. L., Fiser, P. S., Hartin, K. E., & Thompson, B. K. (1986). Effect of feeding diets containing deoxynivalenol (vomitoxin)-contaminated wheat or corn on the feed consumption, weight gain, organ weight and sexual development of male and female pigs. Canadian Journal of Animal Science, 66(3), 765-775. doi: 10.4141/cjas86-083 DOI: https://doi.org/10.4141/cjas86-083
Gerez, J. R., Camacho, T., Marutani, V. H. B., Nascimento de Matos, R. L., Hohmann, M. S., Verri, W. A., Jr., & Bracarense, A. (2021). Ovarian toxicity by fusariotoxins in pigs: Does it imply in oxidative stress? Theriogenology, 165, 84-91. doi: 10.1016/j.theriogenology.2021.02.003 DOI: https://doi.org/10.1016/j.theriogenology.2021.02.003
Gerez, J. R., Desto, S. S., & Bracarense, A. P. F. R. L. (2017). Deoxynivalenol induces toxic effects in the ovaries of pigs: An ex vivo approach. Theriogenology, 90, 94-100. doi: 10.1016/j.theriogenology.2016.10.023 DOI: https://doi.org/10.1016/j.theriogenology.2016.10.023
Grenier, B., & Applegate, T. J. (2013). Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins, 5(2), 396-430. doi: 10.3390/toxins5020396 DOI: https://doi.org/10.3390/toxins5020396
Guerrero-Netro, H. M., Chorfi, Y., & Price, C. A. (2015). Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells. Reproduction, 149(6), 555-561. doi: 10.1530/rep-15-0018 DOI: https://doi.org/10.1530/REP-15-0018
Han, J., Wang, Q. C., Zhu, C. C., Liu, J., Zhang, Y., Cui, X. S., Kim, N. H., & Sun, S. C. (2016). Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation. Toxicology and Applied Pharmacology, 300, 70-76. doi: 10.1016/j.taap.2016.03.006 DOI: https://doi.org/10.1016/j.taap.2016.03.006
Iverson, F., Armstrong, C., Nera, E., Truelove, J., Fernie, S., Scott, P., Stapley, R., Hayward, S., & Gunner, S. (1995). Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice. Teratogenesis, Carcinogenesis, and Mutagenesis, 15(6), 283-306. doi: 10.1002/(sici)1520-6866(1996)15:6<283::aid-tcm5>3.0.co;2-e DOI: https://doi.org/10.1002/tcm.1770150606
Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, D., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L., Nebbia, C. S., Oswald, I. P., Petersen, A., Rose, M., Roudot, A. C., Schwerdtle, T., Vleminckz, C., Vollmer, G.,... & Grasl‐Kraupp, B. (2018). Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified formsin food and feed. EFSA Journal, 15(9), e04718. doi: 10.2903/j.efsa.2017 DOI: https://doi.org/10.2903/j.efsa.2017.4851
Kolesárová, A., Capcarová, M., Maruniaková, N., Baková, Z., Toman, R., Nath, S., & Sirotkin, A. V. (2012). Deoxynivalenol-induced animal ovarian signaling: proliferation and apoptosis. Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 323-332.
Laffan, S. B., Posobiec, L. M., Uhl, J. E., & Vidal, J. D. (2018). species comparison of postnatal development of the female reproductive system. Birth Defects Research, 110(3), 163-189. doi: 10.1002/bdr2.1132 DOI: https://doi.org/10.1002/bdr2.1132
Lan, M., Han, J., Pan, M. H., Wan, X., Pan, Z. N., & Sun, S. C. (2018). Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation. Journal of Pineal Research, 65(1), e12477.doi: 10.1111/jpi.12477 DOI: https://doi.org/10.1111/jpi.12477
Lattanzio, V. M. T., Solfrizzo, M., De Girolamo, A., Chulze, S. N., Torres, A. M., & Visconti, A. (2011). LC–MS/MS characterization of the urinary excretion profile of the mycotoxin deoxynivalenol in human and rat. Journal of Chromatography B, 879(11), 707-715. doi: 10.1016/j.jchromb.2011.01.029 DOI: https://doi.org/10.1016/j.jchromb.2011.01.029
Liew, S. H., Nguyen, Q.-N., Strasser, A., Findlay, J. K., & Hutt, K. J. (2017). The ovarian reserve is depleted during puberty in a hormonally driven process dependent on the pro-apoptotic protein BMF. Cell Death & Disease, 8(8), e2971-e2971. doi: 10.1038/cddis.2017.361 DOI: https://doi.org/10.1038/cddis.2017.361
Lucioli, J., Pinton, P., Callu, P., Laffitte, J., Grosjean, F., Kolf-Clauw, M., Oswald, I. P., & Bracarense, A. P. (2013). The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments. Toxicon, 66, 31-36. doi: 10.1016/j.toxicon.2013.01.024 DOI: https://doi.org/10.1016/j.toxicon.2013.01.024
Malekinejad, H., Schoevers, E. J., Daemen, I. J., Zijlstra, C., Colenbrander, B., Fink-Gremmels, J., & Roelen, B. A. (2007). Exposure of oocytes to the Fusarium toxins zearalenone and deoxynivalenol causes aneuploidy and abnormal embryo development in pigs. Biology of Reproduction, 77(5), 840-847. doi: 10.1095/biolreprod.107.062711 DOI: https://doi.org/10.1095/biolreprod.107.062711
Maranghi, F., & Mantovani, A. (2012). Targeted toxicological testing to investigate the role of endocrine disrupters in puberty disorders. Reproductive Toxicology, 33(3), 290-296. doi: 10.1016/j.reprotox.2012.01.009 DOI: https://doi.org/10.1016/j.reprotox.2012.01.009
Massart, F., & Saggese, G. (2010). Oestrogenic mycotoxin exposures and precocious pubertal development. International Journal of Andrology, 33(2), 369-376. doi: 10.1111/j.1365-2605.2009.01009.x DOI: https://doi.org/10.1111/j.1365-2605.2009.01009.x
Massart, F., Meucci, V., Saggese, G., & Soldani, G. (2008). High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins. The Journal of Pediatrics, 152(5), 690-695. doi: 10.1016/j.jpeds.2007.10.020 DOI: https://doi.org/10.1016/j.jpeds.2007.10.020
Medvedova, M., Kolesarova, A., Capcarova, M., Labuda, R., Sirotkin, A. V., Kovacik, J., & Bulla, J. (2011). The effect of deoxynivalenol on the secretion activity, proliferation and apoptosis of porcine ovarian granulosa cells in vitro. Journal of Environmental Science and Health, 46(3), 213-219. doi: 10.1080/03601234.2011.540205 DOI: https://doi.org/10.1080/03601234.2011.540205
Mishra, S., Srivastava, S., Dewangan, J., Divakar, A., & Kumar Rath, S. (2020). Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Critical Reviews in Food Science and Nutrition, 60(8), 1346-1374. doi: 10.1080/10408398.2019.1571479 DOI: https://doi.org/10.1080/10408398.2019.1571479
Morrissey, R. E. (1984). Teratological study of Fischer rats fed diet containing added vomitoxin. Food and Chemical Toxicology, 22(6), 453-457. doi: 10.1016/0278-6915(84)90328-4 DOI: https://doi.org/10.1016/0278-6915(84)90328-4
Morrissey, R. E., & Vesonder, R. F. (1985). Effect of deoxynivalenol (vomitoxin) on fertility, pregnancy, and postnatal development of Sprague-Dawley rats. Applied and Environmental Microbiology, 49(5), 1062-1066. doi: 10.1128/aem.49.5.1062-1066.1985 DOI: https://doi.org/10.1128/aem.49.5.1062-1066.1985
Ojeda, S. R., Andrews, W. W., Advis, J. P., & White, S. S. (1980). Recent advances in the endocrinology of puberty. Endocrine Reviews, 1(3), 228-257. doi: 10.1210/edrv-1-3-228 DOI: https://doi.org/10.1210/edrv-1-3-228
Papageorgiou, M., Wells, L., Williams, C., White, K., De Santis, B., Liu, Y., Debegnach, F., Miano, B., Moretti, G., Greetham, S., Brera, C., Atkin, S. L., Hardie, L. J., & Sathyapalan, T. (2018). Assessment of urinary deoxynivalenol biomarkers in UK children and adolescents. Toxins, 10(2), 50-62. doi: 10.3390/toxins10020050 DOI: https://doi.org/10.3390/toxins10020050
Pedersen, T., & Peters, H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. Reproduction, 17(3), 555-557. doi: 10.1530/jrf.0.0170555 DOI: https://doi.org/10.1530/jrf.0.0170555
Pestka, J. J., & Smolinski, A. T. (2005). Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health, 8(1), 39-69. doi: 10.1080/10937400590889458 DOI: https://doi.org/10.1080/10937400590889458
Ranzenigo, G., Caloni, F., Cremonesi, F., Aad, P. Y., & Spicer, L. J. (2008). Effects of fusarium mycotoxins on steroid production by porcine granulosa cells. Animal Reproduction Science, 107(1-2), 115-130. doi: 10.1016/j.anireprosci.2007.06.023 DOI: https://doi.org/10.1016/j.anireprosci.2007.06.023
Rotter, B. A., Thompson, B. K., & Rotter, R. G. (1994). Optimization of the mouse bioassay for deoxynivalenol as an alternative to large animal studies. Bulletin of Environmental Contamination and Toxicology, 53(5), 642-647. doi: 10.1007/bf00196934 DOI: https://doi.org/10.1007/BF00196934
Schoevers, E. J., Fink-Gremmels, J., Colenbrander, B., & Roelen, B. A. J. (2010). Porcine oocytes are most vulnerable to the mycotoxin deoxynivalenol during formation of the meiotic spindle. Theriogenology, 74(6), 968-978. doi: 10.1016/j.theriogenology.2010.04.026 DOI: https://doi.org/10.1016/j.theriogenology.2010.04.026
Shi, D., Zhou, J., Zhao, L., Rong, X., Fan, Y., Hamid, H., Li, W., Ji, C., & Ma, Q. (2018). Alleviation of mycotoxin biodegradation agent on zearalenone and deoxynivalenol toxicosis in immature gilts. Journal of Animal Science and Biotechnology, 9(1), 42-52. doi: 10.1186/s40104-018-0255-z DOI: https://doi.org/10.1186/s40104-018-0255-z
Silva, M. V., Pante, G. C., Romoli, J. C. Z., Souza, A. P. M. de, Rocha, G., Ferreira, F. D., Feijó, A. L. R., Moscardi, S. M. P., Paula, K. R. de, Bando, R. Nerilo, S. B., & Machinski, M. Jr.(2018). Occurrence and risk assessment of population exposed to deoxynivalenol in foods derived from wheat flour in Brazil. Food Additives & Contaminants, 35(3), 546-554. doi: 10.1080/19440049.2017.1411613 DOI: https://doi.org/10.1080/19440049.2017.1411613
Sundheim, L., Lillegaard, I. T., Fæste, C. K., Brantsæter, A.-L., Brodal, G., & Eriksen, G. S. (2017). Deoxynivalenol exposure in Norway, risk assessments for different human age groups. Toxins, 9(2), 46-53. doi: 10.3390/toxins9020046 DOI: https://doi.org/10.3390/toxins9020046
Trenholm, H. L., Thompson, B. K., Foster, B. C., Charmley, L. L., Hartin, K. E., Coppock, R. W., & Albassam, M. A. (1994). Effects of feeding diets containing Fusarium (naturally) contaminated wheat or pure deoxynivalenol (DON) in growing pigs. Canadian Journal of Animal Science, 74(2), 361-369. doi: 10.4141/cjas94-049 DOI: https://doi.org/10.4141/cjas94-049
Yang, M., Wu, X., Zhang, W., Ye, P., Wang, Y., Zhu, W., Tao, Q., Xu, Y., Shang, J., Zhao, D., Ding, Y., Yin, Z., & Zhang, X. (2020). Transcriptional analysis of deoxynivalenol‐induced apoptosis of sow ovarian granulosa cell. Reproduction in Domestic Animals, 55(2), 217-228. doi: 10.1111/rda.13610 DOI: https://doi.org/10.1111/rda.13610
Yang, R., Wang, Y.-M., Zhang, L.-S., Zhang, L., Zhao, Z.-M., Zhao, J., & Peng, S.-Q. (2015). Delay of the onset of puberty in female rats by prepubertal exposure to T-2 toxin. Toxins, 7(11), 4668-4683. doi: 10.3390/toxins7114668 DOI: https://doi.org/10.3390/toxins7114668
Yu, M., Chen, L., Peng, Z., Nüssler, A. K., Wu, Q., Liu, L., & Yang, W. (2017). Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: current status and future challenges.Toxicology in Vitro, 41, 150-158. doi: 10.1016/j.tiv.2017.02.011 DOI: https://doi.org/10.1016/j.tiv.2017.02.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.