Genetic characterization of selected Nile tilapia in Santa Catarina

Authors

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5p1739

Keywords:

Oreochromis niloticus, Genetic variability, Microsatellite markers.

Abstract

Different Nile tilapia stocks belonging to the fish breeding program of the Epagri (Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina) were characterized by microsatellite markers. A total of nine stocks (S1 to S9) were evaluated, and for each stock the caudal fin of 30 individuals were sampled. A total of 75 alleles were found at the 11 microsatellite loci used (UNH104, UNH108, UNH160, UNH208, UNH222, UNH848, UNH879, UNH898, UNH952, UNH998). Among the loci used, only UHN160 showed significance for null alleles in stocks S1, S2, S3 and S5. The average number of alleles per loci was 6.8, while the average number of alleles per tilapia stock was 4.4. Five unique alleles were identified between the stock S1 and S5. The observed heterozygosity values (Ho) exceeded the expected heterozygosity (He), resulting in a negative inbreeding coefficient (FIS = -0.092). FST for the total population was 0.109, demonstrating moderate genetic differentiation between the stocks. According to the Euclidean distance, three groups were formed as follows: I - S6, S7 and S9; II - S2, S3 and S4; and III - S1, S5 and S8. However, the existence of two groups can be observed from the PCoA representation: I - S6, S7, S8 and S9; and II - S1, S2, S3, S4 and S5. The formation of these two genetic groups is consistent with the genealogy of stocks. The formation of group III (S1, S5 and S8) in the dendrogram can be explained by the higher average observed heterozygosity values of these stocks. Bayesian analysis revealed the formation of 16 groups with an FST value of 0.2107. This result reinforces the existence of variability existing in the Epagri breeding program, from which it is possible to form heterotic groups to enable the direction of potential crosses to obtain genetic gain. The study enabled genotypic characterization of the tilapia brood stock used in the Epagri breeding program, determining the genetic distance between the stocks, which will enable more accurate selection of individuals for mating for the next generation. It was possible to verify that there is high heterozygosity within the stocks, and moderate genetic differentiation between the stocks. Furthermore, all evaluated markers were polymorphic for this brood stock and will be used to characterize the next generations.

Downloads

Download data is not yet available.

Author Biographies

Bruno Corrêa da Silva, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina

Pesquisador, Dr., Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Epagri, Centro de Desenvolvimento em Aquicultura e Pesca, Cedap, Itajaí, SC, Brasil.

Adriana Pereira, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina

Pesquisadora, M.e, Epagri, Estação Experimental de Itajaí, EEI, Itajaí, SC, Brasil.

Haluko Massago, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina

Pesquisador, Dr., Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Epagri, Centro de Desenvolvimento em Aquicultura e Pesca, Cedap, Itajaí, SC, Brasil.

Keny Henrique Mariguele, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina

Pesquisador, Dr., Epagri, Estação Experimental de Itajaí, EEI, Itajaí, SC, Brasil.

References

Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22), 4692-4693. doi: 10.1093/nar/25.22.4692

Associação Brasileira de Piscicultura (2018). Anuário da Piscicultura 2018. Recuperado de http://www.peixebr.com.br/anuario-peixebr-2018/
Baggio, R. A., Orélis-Ribeiro, R., & Boeger, W. A. (2016). Identifying Nile tilapia strains and their hybrids farmed in Brazil using microsatellite markers. Pesquisa Agropecuária Brasileira, 51(10), 1744-1750. doi: 10.1590/s0100-204x2016001000006

Barroso, R., Tenório, R., Pedroza, M. X., Fº., Webber, D., Belchior, L., Tahim, E., & Muehlmann, L. (2016). Gerenciamento genético da tilápia nos cultivos comerciais. Palmas: EMBRAPA Pesca e Aquicultura-Documentos. Recuperado de http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1036709

Bentsen, H. B., Gjerde, B., Eknath, A. E., Vera, M. S. P., Velasco, R. R., Dantins, J. C.,… Ponzoni, R. W. (2017). Genetic improvement of farmed tilapias: Response to five generations of selection for increased body weight at harvest in Oreochromis niloticus and the further impact of the project. Aquaculture, 468(1), 206-217. doi: 10.1016/j.aquaculture.2016.10.018

Briñez B. R., Caraballo, X. O., & Salazar, M. V. (2011). Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers. Revista MVZ Córdoba, 16(2), 2491-2498. Retrieved from http://www.scielo.org.co/pdf/mvz/v16n2/v16n2a06.pdf

Brookfield, J. F. Y. (1996). A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology, 5(3), 453-455. doi: 10.1046/j.1365-294X.1996.00098.x

Cnaani, A., Hallerman, E. M., Ron, M., Weller, J. I., Indelman, M., Kashi, Y., & Hulata, G. (2003). Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F 2 tilapia hybrid. Aquaculture, 223(1), 117-128. doi: 10.1016/S0044-8486(03)00163-7

Cnaani, A., Zilberman, N., Tinman, S., Hulata, G., & Ron, M. (2004). Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Molecular Genetics and Genomics, 272(2), 162-172. doi: 10.1007/s00438-004-1045-1

Dias, M. A. D., Freitas, R. T. F., Arranz, S. E., Villanova, G. V., & Hilsdorf, A. W. S. (2016). Evaluation of the genetic diversity of microsatellite markers among four strains of Oreochromis niloticus. Animal genetics, 47(4), p. 345-353. doi: 10.1111/age.12423

Falconer, D. S., Mackay, T. F. C., & Frankham, R. (1996). Introduction to quantitative genetics (4nd ed.). Longman, England: Trends in Genetics.
Falush, D., Stephens, M., & Pritchard, J. K. (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587. Retrieved from https://www.genetics.org/content/genetics/164/4/1567.full.pdf

Gjedrem, T. (2010). The first family‐based breeding program in aquaculture. Reviews in Aquaculture, 2(1), 2-15. doi: 10.1111/j.1753-5131.2010.01011.x

Halfen, G. E., Nicoletti, M. E., Appel, H. B., & Tcacenco, F. A. (2012).
Caracterização molecular de plantéis de tilápia do Nilo (Oreochromis niloticus L.) em Santa Catarina, Brasil. Journal of Biotechnology and Biodiversity, 3(2), 21-29. doi: 10.20873/jbb.uft.cemaf.v3n2.halfen

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9. Retrieved from https://www.academia. edu/download/39675641/PAST_Paleontological_Statistics_Software20151104-27951-163povm.pdf.

Hassanien, H. A., & Gilbey, J. (2005). Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites. Aquaculture Research, 36(14), 1450-1457. doi: 10.1111/j.1365-2109.2005.01368.x

Joshi, D., Ram, R. N., & Lohani, P. (2017). Microsatellite markers and their application in fisheries. International Journal of Advances in Agricultural Science and Technology, 4(10), 67-104. Retrieved from https://pdfs.semanticscholar.org/dade/2da0e8a8900b7b1d0d8c866337cdceb8c934.pdf

Kubitza, F. (2015). Aquicultura no Brasil: principais espécies, áreas de cultivo, rações, fatores limiitantes e desafios. Panorama da Aquicultura, 25(150), 10-23. Retrieved from http://www.ferrazmaquinas.com.br/ uploads/conteudo/conteudo/2016/09/cyKAX/aquicultura-no-brasil.pdf

Moraes, B. G., Saldanha, G. B., Rezende, J. V. F., & Sousa, B. M. (2017). Melhoramento genético animal aplicado à aquicultura: atualidade e perspectivas futuras nos programas de melhoramento de tilápia (Oreochromis Niloticus) no Brasil. Sinapse Múltipla, 6(2), 336-340. Retrieved from http://periodicos.pucminas.br/index.php/sinapsemultipla/article/view/16525/12711.

Moreira, A. A., Hilsdorf, A. W., Silva, J. V., & Souza, V. R. (2007). Variabilidade genética de duas variedades de tilápia nilótica por meio de marcadores microssatélites. Pesquisa Agropecuária Brasileira, 42(4), 521-526. doi: 10.1590/S0100-204X2007000400010

Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. doi: 10.1111/j.1471-8286.2005.01155.x

Petersen, R. L., Garcia, J. E., Mello, G., Liedke, A. M. R., Sincero, T. C. M., & Grisard, E. C. (2012). Análise da diversidade genética de tilápias cultivadas no estado de Santa Catarina (Brasil) utilizando marcadores microssatélites. Boletim Instituto de Pesca, 38(4), 313-321. Retrieved from https://www.pesca.sp.gov.br/ boletim/index.php/bip/article/view/966

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. Retrieved from https://www.genetics.org/content/genetics/ 155/2/945.full.pdf.

Rodriguez Rodriguez, M. P., Lopera Barrero, N. M., Vargas, L., Albuquerque, D. M., Goes, E. S. R., Prado, O. P. P., & Ribeiro, R. P. (2013). Caracterização genética de gerações de tilápia Gift por meio de marcadores microssatélites. Pesquisa Agropecuária Brasileira, 48(10), 1385-1393. doi: 10.1590/S0100-204X2013001000010

Romana-Eguia, M. R. R., Ikeda, M., Basiao, Z. U., & Taniguchi, N. (2004). Genetic diversity in farmed Asian Nile and red hybrid tilapia populations evaluated from microsatellite and mitochondrial DNA analysis. Aquaculture, 236(1-4), 131-150. doi: 10.1016/j.aquaculture.2004.01.026

Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. doi: 10.1038/72708

Silva, B. C., Pereira, A., & Mariguele, K. H. (2016). Variabilidade genética com SSR de populações de tilápia-do-nilo da linhagem Gift-Epagri. Anais da Semana Acadêmica do Curso de Engenharia de Aquicultura da UFSC, Florianópolis, SC, Brasil, 14.

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). Micro-Checker: software for indentifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535-538. doi: 10.1111/j.1471-8286.2004.00684.x

Webster, C. D., & Lim, C. (Ed.). (2006). Tilapia: biology, culture, and nutrition. New York, USA: The Haworth Press.

Zhu, H. P., Liu, Z. G., Lu, M. X., Gao, F. Y., Ke, X. L., & Huang, Z. H. (2015). Screening and identification of microsatellite markers associated with cold tolerance in Nile tilapia Oreochromis niloticus. Genetics and Molecular Research, 14(3), 10308-10314. doi: 10.4238/2015

Zhu, W. B., Yang, H., Yuan, X. H., Dong, Z. J., Fu, J. J., Wang, L. M.,… Chen, X. T. (2017). High genetic diversity and differentiation in three red tilapia populations revealed by microsatellite DNA marker analysis. Aquaculture International, 25(6), 1997-2006. doi: 10.1007/s10499-017-0150-1

Downloads

Published

2020-06-17

How to Cite

Silva, B. C. da, Pereira, A., Massago, H., & Mariguele, K. H. (2020). Genetic characterization of selected Nile tilapia in Santa Catarina. Semina: Ciências Agrárias, 41(5), 1739–1754. https://doi.org/10.5433/1679-0359.2020v41n5p1739

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.