Extratos de Achyrocline satureioides (Lam.) DC atuando como moduladores enzimáticos: digestão, inflamação e hemostasia
DOI:
https://doi.org/10.5433/1679-0367.2022v43n1p101Palavras-chave:
Ensaio cometa, Inibidores de proteases, Inibidores de fosfolipases, Plantas medicinais, Toxinas como ferramentasResumo
A Achyrocline satureioides é popularmente conhecida por sua riqueza em compostos fenólicos e por suas propriedades medicinais (anti-inflamatória, analgésica e hepatoprotetora). No presente estudo, com o objetivo de ampliar o conhecimento sobre o potencial farmacológico exercido por esses extratos, os extratos aquoso e etanólico de A. satureioides foram caracterizados por HPLC e testados quanto à sua ação modulatória sobre as fosfolipases A2 e proteases de peçonhas de serpentes. Além disso, também foram testados em atividades de enzimas digestivas. As peçonhas de serpentes foram usadas como ferramentas por apresentarem enzimas com alta homologia funcional e estrutural às humanas. Os resultados demonstram que os extratos de A. satureioides atuam como inibidores ou potencializadores enzimáticos, interferindo em processos relacionados à hemostasia, como coagulação e dissolução do trombo. Além do mais, destacam seu potencial antigenotóxico e as inibições exercidas sobre as enzimas digestivas direcionando seu potencial de uso na prevenção e/ou tratamento de diversas patologias. Novos estudos poderão fornecer informações sobre os mecanismos de interação entre os compostos presentes nos extratos e as diferentes enzimas.Downloads
Referências
Belchor MN, Gaeta HH, Rodrigues CFB, Costa CRC, Toyama DO, Passero LFD, et al. Evaluation of rhamnetin as an inhibitor of the pharmacological effect of secretory phospholipase A2. Molecules. 2017;22(9):1441. doi: 10.3390/molecules22091441
Berling I, Isbister GK. Hematologic effects and complications of snake envenoming. Transf Med Rev. 2015;29(2):82-9. doi: 10.1016/j.tmrv.2014.09.005
Braga MA, Abreu TS, Trento MV, Machado GHA, Pereira LLS, Simão AA, et al. Prospection of enzyme modulators in aqueous and ethanolic extracts of Lippia sidoides leaves: genotoxicity, digestion, inflammation, and hemostasis. Chem Biodivers. 2019;16(3):e1800558. doi: 10.1002/cbdv.201800558
Burkard M, Leischner C, Lauer UM, Busch C, Venturelli S, Frank J. Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases. J Nutr Biochem. 2017;46:1-12. doi: 10.1016/j.jnutbio.2017.01.006
Cesar PHS, Trento MVC, Konig IFM, Marcussi S. Catechin and epicatechin as an adjuvant in the therapy of hemostasis disorders induced by snake venoms. J Biochem Mol Toxicol. 2020;34:e22604. doi:10.1002/jbt.22604
Cesar PHS, Trento MVC, Oliveira DA, Simão AA, Vieira LFA, Marcussi S. Prospection of effects of guava leaves infusion: antigenotoxic action and enzymatic inhibition. Nat Prod Commun. 2017;12(6):957-60. doi: 10.1177/1934578X1701200631
Chao H, Liu Y, Fu X, Xu X, Bao Z, Lin C, et al. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease. Exp Neurol. 2018;300:74-86. doi: 10.1016/j.expneurol.2017.10.031
Cintra AC, Toni LG, Sartim MA, Franco JJ, Caetano RC, Murakami MT, et al. Batroxase, a new metalloproteinase from B. atrox snake venom with strong fibrinolytic activity. Toxicon. 2012;60(1):70-82. doi: 10.1016/j.toxicon.2012.03.018
Ciumărnean L, Milaciu MV, Runcan O, Vesa SC, Răchișan AL, Negrean V, et al. The effects of flavonoids in cardiovascular diseases. Molecules. 2020;25(18):4320. doi:10.3390/molecules25184320
Collins AR, Dusinská M, Franklin M, Somorovská M, Petrovská H, Duthie S, et al. Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen. 1997;30(2):139-46. doi: 10.1002/(sici)1098-2280(1997)30:2<139::aid-em6>3.0.co;2-i.
Costamagna MS, Zampini IC, Alberto MR, Cuello S, Torres S, Pérez J, et al. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem. 2016;190:392-402. doi: 10.1016/j.foodchem.2015.05.068
Elumalai A, Eswariah MC, Chowdary CHV, Kumar R, Anusha M, Naresh K. Screening of thrombolytic activity of Bougainvillea glabra leaves extract by in vitro. Asian J Res Pharm Sci. 2012;2(4):134-6.
Guimarães CL, Moreira-Dill LS, Fernandes RS, Costa TR, Hage-Melim LI, Marcussi S, et al. Biodiversity as a source of bioactive compounds against snakebites. Curr Med Chem. 2014;21(25):2952-79. doi: 10.2174/09298673113206660295
Gutiérrez JM, Avila C, Rojas E, Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon. 1988;26(4):411-3. doi: 10.1016/0041-0101(88)90010-4
Gutiérrez JM, Lomonte B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013;62:27-39. doi: 10.1016/j.toxicon.2012.09.006
Herrera T, Aguilera Y, Rebollo-Hernanz M, Bravo E, Beníteza V, Martínez-Sáez N, et al. Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT - Food Sci Technol. 2018:89:65-73. doi: 10.1016/j.lwt.2017.10.031
Khan MH. Anti-inflammatory potential of alkaloids as a promising therapeutic modality. Lett Drug Des Discov. 2017;14(2):240-9. doi: 10.2174/1570180813666160712224752
Kini RM, Koh CY. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites. Toxins. 2016;8(10):1-27. doi: 10.3390/toxins8100284
Koh LW, Wong LL, Loo YY, Kasapis S, Huang D. Evaluation of different teas against starch digestibility by mammalian glycosidases. J Agric Food Chem. 2010;58(1):148-54. doi: 10.1021/jf903011g
Kostekli M, Karakaya S. Protease inhibitors in various flours and breads: Effect of fermentation, baking and in vitro digestion on trypsin and chymotrypsin inhibitory activities. Food Chem. 2017;224:62–8. doi:10.1016/j.foodchem.2016.12.048
Leuci R, Brunetti L, Poliseno V, Laghezza A, Loiodice F, Tortorella P, et al. Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases. Foods. 2021;10(1):29. doi: 10.3390/foods10010029
Lunagariya NA, Patel NK, Jagtap SC, Bhutani KK. Inhibitors of pancreatic lipase: state of the art clinical perspectives. Excli J. 2014;13:897-921. doi: 10.17877/DE290R-6941
Mack-Wen GVL, Rico GLB, Alarcón PJC, Pereañez JJA. In vitro inhibition of Bothrops asper venom by ethanol extracts from Brownea ariza B. (Caesalpiniaceae). Vitae. 2011;18(1):43-8. https://revistas.udea.edu.co/index.php/vitae/article/view/8776
Marques TR, Caetano AA, Simão AA, Castro FCO, Ramos VO, Corrêa AD. Metanolic extract of Malpighia emarginata bagasse: phenolic compounds and inhibitory potential on digestive enzymes. Braz J Pharmacog. 2016;26(2):191-6. doi:10.1016/j.bjp.2015.08.015
Matos FJA. Introdução à fitoquímica experimental. 2nd ed. Fortaleza (CE): UFC; 1997.
McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J Agric Food Chem. 2005;53(7):2760-6. doi:10.1021/jf0489926
Mors WB, Nascimento MC, Pereira BM, Pereira NA. Plant natural products active against snake bite – the molecular approach. Phytochemistry. 2000;55(6):627-42. doi: 10.1016/S0031-9422(00)00229-6
Moura VM, da Silva WC, Raposo JD, Freitas-de-Sousa LA, Santos MC, de Oliveira RB, et al. The inhibitory potential of the condensed-tannin-rich fraction of Plathymenia reticulata Benth. (Fabaceae) against Bothrops atrox envenomation. J Ethnopharmacol. 2016;183:136-42. doi: 10.1016/j.jep.2016.02.047
Mozzicafreddo M, Cuccioloni M, Eleuteri AM, Fioretti E, Angeletti M. Flavonoids inhibit the amidolytic activity of human thrombin. Biochimie. 2006;88(9):1297-306. doi:10.1016/j.biochi.2006.04.007
Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, et al. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr. 2003;77(6):1466-73. doi: 10.1093/ajcn/77.6.1466
Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother. 2011;2(2):107-11. doi: 10.4103/0976-500X.81903
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett. 2020;497:165-77. doi: 10.1016/j.canlet.2020.10.021
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct. 2020;11:2805-25. doi: 10.1039/D0FO00216J
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Viena, Austria; 2012.
Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1-7. doi: 10.1016/j.jnutbio.2010.06.006
Retta D, Dellacassa E, Villamil J, Suárez SA, Bandoni AL. Marcela, a promising medicinal and aromatic plant from Latin America: A review. Ind Crops Prod. 2012;38:27-38. doi: 10.1016/j.indcrop.2012.01.006
Rodrigues CF, Gaeta HH, Belchor MN, Ferreira MJ, Pinho MV, Toyama DO, et al. Evaluation of potential thrombin inhibitors from the white Mangrove (Laguncularia racemosa (L.) C.F. Gaertn.). Mar Drugs. 2015;13(7):4505-19. doi: 10.3390/md13074505
Rodriguez BAT, Bhan A, Beswick A, Elwood PC, Niiranen TJ, Salomaa V, et al. A platelet function modulator of thrombin activation is causally linked to cardiovascular disease and affects PAR4 receptor signaling. Am J Hum Genet. 2020;107(2):211-21. doi:10.1016/j.ajhg.2020.06.008
Salgueiro ACF, Folmer V, Rosa HS, Costa MT, Boligon AA, Paula FR, et al. In vitro and in silico antioxidant and toxicological activities of Achyrocline satureioides. J Ethnopharmacol. 2016;194:6-14. doi: 10.1016/j.jep.2016.08.048
Selistre HS, Queiroz LS, Cunha OAB, de Souza GEP, Giglio JR. Isolation and characterization of hemorrhagic, myonecrotic and edema-inducing toxins from Bothrops insularis (jararaca ilhoa) snake venom. Toxicon. 1990;28(3):261-73. doi: 10.1016/0041-0101(90)90062-C
Shin S, Yi JM, Kim NS, Park CS, Kim SH, Bang OS. Aqueous extract of Forsythia viridissima fruits: Acute oral toxicity and genotoxicity studies. J Ethnopharmacol. 2020;249:112381. doi: 10.1016/j.jep.2019.112381
Silva SL, Calgarotto AK, Maso V, Damico DC, Baldasso P, Veber CL, et al. Molecular modeling and inhibition of phospholipase A2 by polyhydroxy phenolic compounds. Eur J Med Chem. 2009;44(1):312-21. doi: 10.1016/j.ejmech.2008.02.043
Simão AA, Corrêa AD, Carvalho TCL, Cesar PHS, Oliveira CHM, Marcussi S. Pharmaco-toxic characterization of the aqueous extract from Pereskia grandifolia leaves. J Med Plants Res. 2015;9(7):216-22. doi: 10.5897/JMPR2014.5647
Simão AA, Corrêa AD, Chagas PMB. Inhibition of digestive enzymes by medicinal plant aqueous extracts used to aid the treatment of obesity. J Med Plants Res. 2012;6(47):5826-30. doi: 10.5897/JMPR12.1023
Simão AA, Marques TR, Marcussi S, Corrêa AD. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes. An Acad Bras Ciên. 2017;89(Supl 3):2155-65. doi: 10.1590/0001-3765201720160067
Singh R, Akhtar N, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. Life Sci. 2010;86(25-26):907-18. doi: 10.1016/j.lfs.2010.04.013
Souza SP, Pereira LLS, Souza AA, dos Santos CD. Inhibition of pancreatic lipase by extracts of Baccharis trimera (Less.) DC., Asteraceae: evaluation of antinutrients and effect on glycosidases. Braz J Pharmacog. 2011;21(3):450-5. doi: 10.1590/S0102-695X2011005000049
Sponchiado G, Adam ML, Silva CD, Soley BS, Mello-Sampayo C, Cabrini DA, et al. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review. J Ethnopharmacol. 2016;178:289-96. doi: 10.1016/j.jep.2015.10.026
The United States Pharmacopeia. The national formulary NF 18 (Pharmacopeial Convention Ing). Rockvile; 2005.
Yin WG, Zhou P, Zhou XH, Liu YM, Chen C, Xuan SX, et al. An analysis of the correlation between the human apolipoprotein E gene polymorphism and lipoprotein-associated phospholipase A2. Cardiovasc Diagn Ther. 2020;10(3):520-5. doi: 10.21037/cdt-20-43
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Semina: Ciências Biológicas e da Saúde
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Biológicas e da Saúde adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.