Utilization of agroindustrial byproducts for the production of lipase by a new strain of Pseudomonas sp.

Autores/as

  • Cristiani Baldo Instituto Federal do Paraná, Londrina
  • Lillian Maria Baggio Universidade Estadual de Londrina
  • Marcos Roberto Oliveira Universidade Estadual de Londrina
  • Marcelo Rodrigues Melo Universidade Estadual de Londrina
  • Fabiana Guillen Moreira Gasparin Universidade Estadual de Londrina
  • Maria Antonia Pedrine Colabone Celligoi Universidade Estadual de Londrina

DOI:

https://doi.org/10.5433/1679-0367.2020v41n2p165

Palabras clave:

Crude lecithin gum, Chicken fat, Enzyme, Fermentation

Resumen

This study aimed to evaluate the production of lipases by a new strain of Pseudomonas sp. Using fermentation medium containing byproducts of poultry meat or soybean oil industry. The results indicate that chicken fat and soybean gum induced 48.3 U/mL and 93.3 of lipase activity, respectively. However, the higher lipase production was obtained when the crude lecithin gum was used, archiving 272.6 U/ml of activity after 24 hours. The partial biochemical characterization of the enzyme showed that the optimum reaction conditions were pH 9.0 and 35 °C. The enzyme was stable at temperatures between 25 to 75 °C and at pH from 6 to 9. The enzyme also showed good stability in organic solvents, such as acetronitrile, hexane, ethanol and isopropanol. This study indicates that the byproducts tested are promising for the production of lipase and can contribute to the reduction of enzymatic production costs on a large scale, increase the value of these byproducts and reduce potential environmental impacts caused by its accumulation in nature.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cristiani Baldo, Instituto Federal do Paraná, Londrina

PhD from the Interunits Program in Biotechnology at the Universidade de São Paulo / Instituto Butantan, São Paulo, São Paulo, Brazil. Professor of the Biotechnology course integrated with High School at the Instituto Federal do Paraná, Londrina, Paraná, Brazil

Lillian Maria Baggio, Universidade Estadual de Londrina

Graduated in Pharmacy from the Universidade Estadual de Londrina, Londrina, Paraná, Brazil

Marcos Roberto Oliveira, Universidade Estadual de Londrina

PhD in Biotechnology from the Universidade Estadual de Londrina, Londrina, Paraná, Brazil

Marcelo Rodrigues Melo, Universidade Estadual de Londrina

PhD by the Agricultural Microbiology program at the Federal University of Viçosa, Viçosa, Minas Gerais, Brazil. Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.

Fabiana Guillen Moreira Gasparin, Universidade Estadual de Londrina

PhD in Biological Sciences (Cell Biology) from the Universidade Estadual de Maringá, Maringá, Paraná, Brazil. Adjunct Professor C, Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.

Maria Antonia Pedrine Colabone Celligoi, Universidade Estadual de Londrina

PhD in Biological Sciences (Applied Microbiology) from Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil. Associate Professor C, Department of Biochemistry and Biotechnology,Universidade Estadual de Londrina, Londrina, Paraná, Brazil

Citas

Patel N, Rai D, Shivam, Shahane S, Mishra U. Lipases: Sources, Production, Purification, and Applications. Recent Pat Biotechnol. 2018;12:1-12. doi: 10.2174/1872208312666181029093333.

Rodrigues RC, Virgen-Ortíz JJ, Dos Santos JCS, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: mmobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 2019;37(5):746-70. doi: 10.1016/j.biotechadv.2019.04.003.

Shuai W, Das RK, Naghdi M, Brar SK, Verma M. A review on the important aspects of lipase immobilization on nanomaterials. Biotechnol Appl Biochem. 2017;64(4):496-508. doi: 10.1002/bab.1515.

Villeneuve P, Muderhwa JM, Graille J, Haas, MJ. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B-Enzym. 2000;9(4-6):113-48. doi: 10.1016/S1381-1177(99)00107-1

Barros M, Fleuri LF, Macedo GA. Seed Lipase: sources, applications and properties a review. Braz J Chem Eng. 2010;27(1):15-29. doi: 0.1590/S0104-66322010000100002

Choudhury P, Bhunia B. Industrial application of lipase: a review. Biopharm J. 2015; 1(2): 41-7.

Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV. A review on microbial lipases production. Food Bioproc Tech. 2010;3(2):182-96. doi: 0.1007/s11947-009-0202-2

Smaniotto A, Skovronski A, Rigo E, Tsai SM, Durrer A, Foltran LL, Treichel H. Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain. Braz J Microbiol. 2014;45(1);294-302. doi: 10.1590/S1517-83822014000100043

Weisburg WG. Barns SM, Pelletier DA, Lane, DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. doi: 10.1128/jb.173.2.697-703.1991

Young JP, Downer HL, Eardly BD. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol. 1991;173(7): 2271-7. doi: 10.1128/jb.173.7.2271-2277.1991

Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol. 2006;29(4):315-32. doi: 10.1016/j.syapm.2005.12.002

Winkler UK, Stuckmann M. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 1979; 138(3):663-70.doi: 0021-9193/79/06-0663/08$02.00/0

Bisht D, Yadav SK, Gautam P, Darmwal NS. Simultaneous production of alcaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeroginosa. J Basic Microbiol. 2012;52:1-8.doi: 10.1002/jobm.201200157

Ruchi G, Anshu G, Khare SK. Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresour Technol. 2008;99(11):4796–802. https://doi.org/10.1016/j.biortech.2007.09.053

Centenaro, GS, Furlan VJM, Souza-Soares LA. Gordura de frango: alternativas tecnológicas e nutricionais. Semina Ciênc Agrár. 2008;29(3):619-30.

Said NW. Extrusion of alternative feed ingredients: An environmental and nutritional solution. J Appl Poult Res. 1996;5:395-407

Kiran GS, Shanmughapriya S, Jayalakshmi J, Selvin J, Gandhimathi, R., Sivaramakrishnan S, et al. Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioproc Biosyst Eng. 2008;31(5):483-92. doi: 10.1007/s00449-007-0186-0

Marques TA, Baldo C, Borsato D, Buzato JB, Celligoi MAPC. Utilization of dairy effluent as alternative fermentation medium for microbial lipase production. Rom Biotechnol Lett. 2014;19(1):9042-50.

Ramani A, Kennedy LJ, Ramakrishnan M, Sekaran G. Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem. 2010;45(10),1683-91. doi: 10.1016/j.procbio.2010.06.023

Salihu A, Alam MZ, Abdulkarim MI, Salleh HM. Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. J Mol Catal B-Enzym. 2011;69(1-2):66-73. doi: 10.1016/j.molcatb.2010.12.012

Asih DR, Alam MZ, Salleh MN, Salihu A. Pilot-scale production of lipase using palm oil mill effluent as a basal medium and its immobilization by selected materials. J Oleo Sci. 2014;63(8):779-85. doi: 10.5650/jos.ess13187

Jinwal U, Roy U, Chowdhury A, Bhaduri A, Roy PK. Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendoncina PK-12Cs and chemoselective hydrolysis of fatty acid ester. Bioorg Med Chem. 2003;11(6):1041-1046. doi: 10.1016/S0968-0896(02)00516-3

Karadzic I, Masui A, Zivkovic LI, Fujiwara N. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci Bioeng. 2006;102: 82-9. doi: 10.1263/jbb.102.82

Dandavate V, Jinjala J, Keharia H, Madamwar D. Production, partial purification and characterization of organic solvente tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis, Bioresour Technol. 2009;100(13):3374-81. doi: 10.1016/j.biortech.2009.02.011

Descargas

Publicado

2020-07-07

Cómo citar

1.
Baldo C, Baggio LM, Oliveira MR, Melo MR, Gasparin FGM, Celligoi MAPC. Utilization of agroindustrial byproducts for the production of lipase by a new strain of Pseudomonas sp. Semin. Cienc. Biol. Saude [Internet]. 7 de julio de 2020 [citado 21 de noviembre de 2024];41(2):165-76. Disponible en: https://ojs.uel.br/revistas/uel/index.php/seminabio/article/view/36728

Número

Sección

Artigos