Reference gene stability in the Longissimus thoracis et lumborum muscle of Colombian Creole sheep
DOI:
https://doi.org/10.5433/1679-0359.2022v43n3p987Keywords:
cDNA, Normalization, Pair-wise correlation, Relative quantifications, RT-qPCR.Abstract
The Colombian Creole sheep breed has a high economic and social importance for Colombia. Both males and females of this breed are multipurpose animals, and evaluating the production and meat quality of both sexes is important for small farmers in Colombia. This requires the use of tools that help to evaluate critical production points, such as Real-time quantitative polymerase chain reaction (RT-qPCR), which is a widely used molecular tool for the relative quantification of candidate genes in various tissues. For its correct use, the use of housekeeping genes with stable expression, so-called “reference genes”, is required. However, recent studies have shown that the expression of these reference genes can vary among tissues and can be modulated by breed, sex, or external stimuli. Likewise, there is little information regarding the expression of these genes in the Longissimus thoracis et lumborum muscle of male and female Colombian Creole sheep. In this study, the stability in the expression of seven reference genes (ACTB, YWHAZ, SDHA, GAPDH, TUBB2A, B2M, and PGK1) in the Longissimus thoracis et lumborum muscle of male and female Colombian Creole sheep was compared since they are used in RT-qPCR studies to determine the most stable ones for this breed. Twelve animals, six males and six females, with a body weight of 26 ± 4 kg and 12 ± 3 months of age, were used under grazing conditions. Biopsies of the Longissimus thoracis et lumborum muscle were taken, from which RNA was extracted and cDNA was synthesized. Expression was determined using RT-qPCR, and its stability was analyzed by computational algorithms using the geNorm, Normfinder, and BestKeeper software packages, which were integrated using the RefFinder software package. The results indicate that GAPDH, ACTB, and SDHA have the highest stability, whereas the most variable expression was found for B2M. These data provide the basis for more precise results in RT-qPCR studies of gene expression in the muscle of Colombian Creole sheep.Downloads
References
Ángel, S., & Ramírez, A. (2014). Estudio zoométrico del Ovino de Pelo Criollo Colombiano. AICA, 4(1), 338-340.
Argyropoulos, C. P., Chen, S. S., Ng, Y., Roumelioti, M., Michael, M., & Edey, J. (2017). Rediscovering Beta-2 Microglobulin as a biomarker across the Spectrum of kidney diseases. Frontiers in Medicine, 4(73), 1-25. doi: 10.3389/fmed.2017.00073
Aurélio, M., Fortes, S., Marzuca-nassr, G. N., Vitzel, K. F., Hermano, C., Newsholme, P., & Curi, R. (2016). Housekeeping proteins: how useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Analytical Biochemistry, 504(1), 38-40. doi: 10.1016/j.ab.2016.03.023
Aziziyan, A., Sadeghi, M., Ganjkhanlou, M., & Bahnamiri, H. Z. (2020). Reference gene selection in adipose and muscle tissues of fat-tailed Lori-bakhtiari lambs, Iranian Journal of Veterinary Medicine, 14(03), 273-288. doi: 10.22059/IJVM.2020.285371.1005008
Bradley, R. (1978). Skeletal muscle biopsy techniques in animals for histochemical and ultrastructural examination and especially for the diagnosis of myodegeneration. British Veterinary Journal, 134(5), 434-444. doi: 10.1016/S0007-1935(17)33385-7
Breuss, M., & Keays, D. A. (2014). Microtubules and neuro developmental disease: the movers and the makers. Advances in Expreimental Medicine and Biology, 800(1), 75-96. doi: 10.1007/978-94-007-7687-6
Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M.,… Shipley, G. L. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611-622. doi: 10.1373/clinchem.2008.112797
Cafferky, J., Hamill, R. M., Allen, P., O Doherty, J. V., Cromie, A., & Sweeney, T. (2019). Effect of breed and gender on meat quality of M. longissimus thoracis et lumborum muscle from crossbred beef bulls and steers. Foods, 8(173), 1-10. doi: 10.3390/foods8050173
Clark, E. L., Bush, S. J., Mcculloch, M. E. B., Farquhar, I. L., Young, R., Lefevre, L.,… Hume, D. A. (2017). A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genetics, 13(9), e1006997.
Gagaoua, M., Terlouw, E. M. C., Micol, D., Hocquette, J., Moloney, A. P., & Nuernberg, K. (2016). Sensory quality of meat from eight different types of cattle in relation with their biochemical characteristics. Journal of Integrative Agriculture, 15(7), 1550-1563. doi: 10.1016/S2095-3119(16)61340-0
Garrels, J. I., & Gibsont, W. (1976). Identification and characterization of multiple forms of Actin. Cell, 9(4), 793-805. doi: 10.1016/0092-8674(76)90142-2
Gierke, S., Kumar, P., & Wittmann, T. (2010). Analysis of microtubule polymerization dynamics in live cells. Methods in cell biology, 97(10), 15-33. doi: 10.1016/S0091-679X(10)97002-7
Gong, H., Sun, L., Chen, B., Han, Y., Pang, J., Wu, W., & Qi, R. (2016). Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Scientific Reports, 6(1), 1-12. doi: 10.1038/srep38513
Guerrero, A., Valero, M. V., Campo, M. M., & Sañudo, C. (2013). Some factors that affect ruminant meat quality: from the farm to the fork. Review. Acta Scientiarum - Animal Sciences, 35(4), 335-347. doi: 10. 4025/actascianimsci.v35i4.21756
Hederstedt, L., & Rutberg, L. (1981). Succinate dehydrogenase-a comparative review. Microbiological Reviews, 45(4), 542-555. doi: 0146-0749/81/120542-14302.00/0
Heinz, C., Mberema, H., & Sparagano, O. A. E. (2017). Expression stability of reference genes in the skeletal muscles of beef cattle. African Journal of Biotechnology, 16(6), 261-267. doi: 10.5897/AJB2016.15140
Hernandez, D., Montes, D., Otero, R., Prieto, E., Espitia, A., & Buelvas, M. (2019). Polimorfismos FecXR, FecGI y FecGH en el ovino de pelo colombiano. Archivos de Zootecnia, 68(262), 194-200. doi: 10.21 071/az.v68i262.4136
Hildyard, J. C. W., Finch, A. M., & Wells, D. J. (2019). Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy. PLoS One, 14(1), 1-28. doi: 10.1371/ journal.pone.0211384
Hiller, B., Herdmann, A., & Nuernberg, K. (2011). Dietary n-3 fatty acids significantly suppress lipogenesis in bovine muscle and adipose tissue: a functional genomics approach. Lipids, 46(7), 557-567. doi: 10.10 07/s11745-011-3571-z
Holdridge (1987). Ecología basada en zonas de vida (No. 83). Agroamérica, 6. 199-203.
Huggett, J., Dheda, K., Bustin, S., & Zumla, A. (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes and Inmmunity, 6(4), 279-284. doi: 10.1038/sj.gene.6364190
Jassim, A. I. (2014). Comparison of the anesthetic effect of paracetamol, tramadol, ketamine, xylazine, combination in three anesthetic protocols by using two different administration routes in sheep. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 13(2), 137-145. doi: 10.29079/vol13iss2art315
Jiang, X. I. N., Xue, Y., Zhou, H., Li, S., & Zhang, Z. (2015). Evaluation of reference gene suitability for quantitative expression analysis by quantitative polymerase chain reaction in the mandibular condyle of sheep. Molecular Medicine Reports, 12(4), 5633-5640. doi: 10.3892/mmr.2015.4128
Kawai, K., Miyazaki, S., Kawashima, T., Tajiri, E., Mori, M., Kitazaki, K.,… Yokoyama, M. (2010). Serum beta2-microglobulin concentration as a novel marker to distinguish levels of risk in acute heart. Journal of Cardiology, 55(1), 99-107. doi: 10.1016/j.jjcc.2009.10.003
Kim, J. W., Kim, S. J., Han, S. M., Paik, S. Y., Ph, D., Hur, S. Y.,… Namkoong, S. E. (1998). Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human cervical cancers. Gynecologic Oncology, 71(2), 266-269. doi: 10.1006/gyno.1998.5195
Kulichenko, A. N., Kovalev, D. A., Pisarenko, S. V, & Volynkina, A. S. (2016). Correlation between gene expression profiles in muscle and live weight in Dzhalginsky Merino sheep. Revista Colombiana de Ciencias Pecuarias, 29(3), 188-198. doi: 10.17533/udea.rccp.v29n3a04
Lind, V., Berg, J., Morten, S., Hersleth, M., & Olav, L. (2011). Effect of gender on meat quality in lamb from extensive and intensive grazing systems when slaughtered at the end of the growing season. Meat Sciencet, 88(2), 305-310. doi: 10.1016/j.meatsci.2011.01.008
Liu, J., & Victor, K. (2003). Estradiol and testosterone have opposite effects on microtubule polymerization. Neuro Endocrinology, 77(4), 258-272. doi: 10.1159/000070281
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2- CT method. Methods, 25(4), 402-408. doi: 10.1006/meth.2001.1262
Mateescu, R. G., & Thonney, M. L. (2002). Gene expression in sexually dimorphic muscles in sheep 1. Journal of Animal Science, 80(7), 1879-1887. doi: 10.2527/2002.8071879x
Michal, J., Marketa, C., Jiri, R., Vojtech, S., Tetyana, S., Eduarda, D.,… David, S. (2018). Estradiol dimer inhibits tubulin polymerization and microtubule dynamics. Journal of Steroid Biochemistry and Molecular Biology, 183(1), 68-79. doi: 10.1016/j.jsbmb.2018.05.008
Moolchand, M., Kachiwal, A. B., Soomro, S. A., & Bhutto, Z. A. (2018). Comparison of sedative and analgesic effects of xylazine, detomidine, and medetomidine in sheep. Egyptian Journal of Sheep & Goat Sciences, 9(2), 43-48. doi: 10.21608/ejsgs.2014.26737
Mori, R., Wang, Q., Danenberg, K. D., Pinski, J. K., & Danenberg, P. V. (2008). Both B-Actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. The Prostate, 68(14), 1555-1560. doi: 10.1002/pros.20815
Nascimento, C. S., Barbosa, L. T., Brito, C., Fernandes, R. P. M., Mann, R. S., Pinto, A. P. G.,... Duarte, M. S. (2015). Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS ONE, 10(5), 1-15. doi: 10.1371/ journal.pone.0127935
Nazari, F., Parham, A., & Maleki, A. F. (2015). GAPDH, beta-actin and beta 2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose and marrow-derived mesenchymal stem cells. Journal of Animal Science and Technology, 7(57), 1-8. doi: 10.1186/s40781-0 15-0050-8
Niu, G., Yang, Y., Zhang, Y., & Hua, C. (2016). Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs. PeerJ, 4(e2428), 1-19. doi: 10.7717/peerj.2428
Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1(3), 1559-1582. doi: 10.1038/nprot.2006.236
Peletto, S., Bertuzzi, S., Campanella, C., Modesto, P., Caramelli, M., & Acutis, P. L. (2011). Evaluation of internal reference genes for quantitative expression analysis by real-time PCR in ovine whole blood. International Journal of Molecular Sciences, 12(11), 7732-7747. doi: 10.3390/ijms12117732
Persons, D. A., Schek, N., Hall, B. L., & Finn, O. J. (1989). Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states. Molecular Carcinogenesis, 94(2), 88-94.
Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509-515. doi: 10.1023/b:bile.0000019559.84305.47
Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391-406. doi: 10.10 07/s13353-013-0173-x
Ruedrich, E. D., Henzel, M. K., Hausman, B. S., & Bogie, K. M. (2013). Reference gene identification for reverse transcription-quantitative polymerase chain reaction analysis in an ischemic wound-healing model. Journal of Biomolecular Techniques, 24(4), 181-186. doi: 10.7171/jbt.13-2404-003
Sahu, A. R., Wani, S. A., Saxena, S., Rajak, K. K., Malla, W. A., Ishaq, R.,… Mishra, B. (2018). Selection and validation of suitable reference genes for qPCR gene expression analysis in goats and sheep under Peste des petits ruminants virus (PPRV), lineage IV infection. Scientific Reports, 8(1), 1-11. doi: 10.10 38/s41598-018-34236-7
Schulze, F., Malhan, D., Khassawna, T. El, Heiss, C., Seckinger, A., Hose, D., & Rosen-Wolff, A. (2017). A tissue-based approach to selection of reference genes for quantitative real-time PCR in a sheep osteoporosis model. BMC Genomics, 18(975), 1-9. doi: 10.1186/s12864-017-4356-4
Sikand, K., Singh, J., Ebron, J. S., & Shukla, G. C. (2012). Housekeeping gene selection advisory: Glyceraldehyde- 3-phosphate dehydrogenase (GAPDH) and beta-actin are targets of miR-644a. PLoS ONE, 7(10), 1-9. doi: 10.1371/journal.pone.0047510
Staats, K. A., Schonefeldt, S., Van Rillaer, M., Van Hoecke, A., Van Damme, P., Robberecht, W.,… Van Den Bosch, L. (2013). Beta -2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis. Frointiers in Cellular Neuroscience, 7(12), 6-10. doi: 10.3389/fncel. 2013. 00249
Tripathi, A. K., Koringa, P. G., Jakhesara, S. J., Ahir, V. B., Ramani, U. V., Bhatt, V. D.,… Joshi, C. G. (2012). A preliminary sketch of horn cancer transcriptome in Indian zebu cattle. Gene, 493(1), 124-131. doi: 10. 1016/j.gene.2011.11.007
Tristan, C., Shahani, N., Sedlak, T. W., & Sawa, A. (2011). The diverse functions of GAPDH : views from different subcellular compartments. Cellular Signalling, 23(2), 317-323. doi: 10.1016/j.cellsig.2010.08. 003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.