Study of metalloproteinases in the blood of goats experimentally infected with caprine encephalitis arthritis virus

Autores/as

DOI:

https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3165

Palabras clave:

Lentivirus, MMPs, Proteases, Zymography.

Resumen

Caprine arthritis encephalitis is a lentiviral disease that leads to considerable losses in goat farming. In the acute phase of viral infection, though antiviral antibodies are produced by the host’s immune system, they are not sufficient to be detected by serological tests. Acute infections begin with an incubation period, during which the viral genome replicates and host innate responses are initiated. Matrix metalloproteinases (MMPs) are enzymes that play an important role in the physiological and pathological processes of tissue remodeling. The present study aimed to evaluate the expression of MMPs and their activity in the blood serum of goats experimentally infected with caprine arthritis encephalitis virus (CAEV). Five dairy goats, aged 3-4 years, were intravenously inoculated with CAEV Cork strain (titer: 105-6 TCID50/mL) after being tested negative for CAEV thrice at consecutive intervals of 30 days using western blot analysis and nested-PCR. The study included three stages: S1 or pre-infection stage; S2 or seroconversion stage, corresponding to the occurrence of first seroconversion; and S3 or post-seroconversion stage, corresponding to 23 weeks after seroconversion. Zymography was performed for the samples using gelatin zymography gels (12.5%), which were subjected to electrophoresis at 170V, 1A, and 300W for 50-70 min. The density of MMP-2 was found to be lower at S1 (1456.20 pixels) than that at S2 and S3 (1943.80 and 2104.40 pixels, respectively) (P < 0.05); and the density of MMP-9 was found to be lower at S3 (133.60 pixels) than that at S1 and S2 (359.60 and 370.60 pixels, respectively). The density of proMMP-2 was low at S1 and S3 (130.45 and 145.20 pixels, respectively). On the other hand, the density of proMMP-9 was statistically different between S1 and S3 (89.22 vs. 415.60 pixels). Both proMMP-2 and proMMP-9 were absent at S2. Thus, MMP-2 and MMP-9 exhibited opposite behaviors depending on the stage of infection. As the greatest activity of MMP-2 was detected at stage S3, we suggest that MMP-2 can be used as a biomarker for complementary diagnosis of acute CAEV infection. In addition, the presence of proMMP-13 can be used to indicate active viral infection.

Métricas

Cargando métricas ...

Biografía del autor/a

Ylana Santos de Galiza, Universidade Federal do Ceará

Discente do Curso de Doutorado do Programa de Pós-Graduação em Zootecnia, Universidade Federal do Ceará, UFC, Fortaleza, CE, Brasil.

Angela Maria Xavier Eloy, Empresa Brasileira de Pesquisa Agropecuária

Pesquisadora, Departamento de Sanidade Animal, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA CAPRINOS E OVINOS, Sobral, CE, Brasil.

Raymundo Rizaldo Pinheiro, Empresa Brasileira de Pesquisa Agropecuária

Pesquisador, Departamento de Sanidade Animal, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA CAPRINOS E OVINOS, Sobral, CE, Brasil.

Renato Mesquita Peixoto, Empresa Brasileira de Pesquisa Agropecuária

Dr., Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA CAPRINOS E OVINOS, Sobral, CE, Brasil. Bolsista de Desenvolvimento Científico Regional do Conselho Nacional de Desenvolvimento Científico e Tecnológico (DCR-CNPq/FUNCAP), nível C, Brasília, DF, Brasil.

Ana Milena César Lima, Universidade Federal do Piauí

Discente do Curso de Doutorado do Programa de Pós-Graduação em Ciência Animal, Universidade Federal do Piauí, UFPI, Teresina, PI, Brasil.

Maria Luane da Silva Barroso, Universidade Estadual Vale do Acaraú

M.e em Zootecnia, Universidade Estadual Vale do Acaraú, UVA, Sobral, CE, Brasil.

Luzianna Macedo Fonseca, Centro Universitário INTA

Discente do Curso de Graduação em Medicina Veterinária, Centro Universitário INTA, UNINTA, Sobral, CE, Brasil.

Citas

Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2017). Proteomics: technologies and their applications. Journal of Chromatographic Science, 55(2), 182-196. doi: 10.1093/chromsci/bmw 167

Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K.,… Hanahan, D. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nature Cell Biology, 2(10), 737-744. doi: 10.1038/35036374

Bezerra, R. Q., Jr., Eloy, A. M. X., Furtado, J. R., Pinheiro, R. R., Andrioli, A. P., Moreno, F. B.,... Teixeira, M. F. S. (2017). A panel of protein candidates for comprehensive study of Caprine Arthritis Encephalitis (CAE) infection. Tropical Animal Health and Production, 50(1) 43-48, 2017. doi: 10.1007 /s11250-017-1398-1

Bezerra, R. Q., Jr., Eloy, A. M. X., Perreira, E. P., Furtado, J. R., Souza, K. C. S., Lima, A. R.,... Teixeira, M. F. S. (2015). Avaliação das metaloproteinases de matriz no sangue de reprodutores caprinos naturalmente infectados com artrite encefalite caprina na região Semiárida do Brasil. Acta Scientiae Veterinariae, 43(1258), 1-7. Recuperado de http://www.ufrgs.br/actavet/43/PUB%201258.pdf

Blacklaws, B. A. (2012). Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis vírus. Comparative Immunology, Microbiology and Infectious Diseases, 35(3), 259-269. doi: 10.1016/j.cimid.2011.12.003

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi: 10.1016/ 0003-2697(76)90527-3

Concha, H. A. R. (2010). Papel das metaloproteinases de matriz nas alterações da barreira hematoencefálica em ratos submetidos à sepse severa. Dissertação de mestrado, Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, RS, Brasil. Recuperado de http://www.bib.unesc. net/pergamum/biblioteca/index.php?codAcervo=99541

Concha-Bermejillo, A. de la., Brodie, S. J., Magnus-Corral, S., Browen, R. A. & DeMartini, J. C. (1995). Pathologic and serologic response to isogeneic twin lambs to phenotypically distinct lentiviruses. Journal of Acquired Immune Deficiency Syndromes and Retroviroly, 8(2), 116-123. doi: 10.1097/0004 2560-199502000-00002

Dawson, M. (1987). Pathogenesis of maedi-visna. Veterinary Record, 120(19), 451-454. doi: 10.1136/vr. 120.19.451

Diffay, B. C., Mckenzie, D., Wolf, C., & Pugh, D. G. (2005). Abordagem e exame de ovinos e caprinos. In D. G. Pugh (Eds.), Clínica de ovinos e caprinos (pp. 1-19). São Paulo, SP: Roca.

Elkington, H., White, P., Addington-Hall, J., Higgs, R., & Edmonds, P. (2005). The healthcare needs of chronic obstructive pulmonary disease patients in the last year of life. Palliative Medicine, 19(6), 485-491. doi: 10.1191/0269216305pm1056oa

Eloy, A. M. X., Bezerra, R. Q., Jr., Pinheiro, R. R., & Andrioli, A. (2015). Técnica Zimográfica como método para monitoramento da Artrite Encefalite Caprina (CAE). (Comunicado Técnico, 155). Sobral, CE: Embrapa Caprinos e Ovinos, CNPC. 1-6. Recuperado de http://ainfo.cnptia.embrapa.br/digital/ bitstream/item/146807/1/ CNPC-2015-Cot155.pdf

Franke, C. R. (1998). Controle sanitário da artrite-encefalite caprina (CAE). Salvador, BA: EDUFBA.

Geurts, N., Opdenakker, G., & Steen, P. E. van den. (2012). Matrix Metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacology & therapeutics, 133(3), 257-279. doi: 10.1016/j. pharmthera.2011.11.008

Hanson, J., Hydbring, E., & Olsson, K. (1996). A long term study of goats naturally infected with caprine arthritis-encephalitis virus. Acta Veterinary Scandinavica, 37(1), 31-39. Recuperado de http://pubmed. ncbi.nlm.nih.gov/8659344/

Hernández Rios, M., Sorsa T., Obrego´n, F., Tervahartiala, T., Valenzuela, M. A., Pozo, P.,… Gamonal, J. (2009). Proteolytic roles of matrix metalloproteinases (MMP)-13 during progression of chronic periodontitis: initial evidence for MMP-13/MMP-9 activation cascade. Journal of Clinical Periodontology, 36(12), 1011-1017. doi: 10.1111/j.1600-051X.2009.01488.x

Houwers, D. J., & Nauta, I. M. (1989). Immunoblot analysis of the antibody response to ovine lentivirus infections. Veterinary Microbiology, 19(2), 127-139. doi: 10.1016/0378-1135(89)90078-3

Hu, J., Steen, P. E. van den., Sang, Q. X. A., & Opdenakker, G. (2007). Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature Reviews Drug Discovery, 6(6), 480-498. doi: 10.1038/nrd2308

Iwamoto, N., Kawakami, A., Arima, K., Tamai, M., Nakamura, H., Kawashiri, S.,… Eguchi, K. (2011). Contribution of an adenine to guanine single nucleotide polymorphism of the matrix metalloproteinase-13 (MMP-13) -77 promoter region to the production of anticyclic citrullinated peptide antibodies in patients with HLA-DRB1*shared epitope-negative rheumatoid arthritis. Journal of Modern Rheumatology, 21(3), 240-243. doi: 10.1007/s10165-010-0375-6

Jones, B. T. (2014). The current prevalence of caprine arthritis-encephalitis virus in midwestern goat herds. Doctoral thesis, University of Nebraska, Lincoln, NE, USA. Retrieved from http://digitalcommons.unl. edu/cgi/viewcontent.cgi?article=1014&context=vetscidiss

Klein, T., & Bischoff, R. (2011). Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 41(2), 271-290. doi: 10.1007/s00726-010-0689-x

Knäuper, V., Bailey, L., Worley, J. R., Soloway, P., Patterson, M. L., & Murphy, G. (2002). Cellular activation of pro-MMP-13 by MTI-MMP depends on the C-terminal domain of MMP-13. FEBS Letters, 532(1-2), 127-130. doi: 10.1016/s0014-5793(02)03654-2

Knäuper, V., Cowell, S., Smith, B., Lopez-Otin, C., O'Shea, M., & Morris, H. (1997). The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of pr collagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. Journal of Biological Chemistry, 272(12), 7608-7616. doi: 10.1074 / jbc.272.12.7608

Knäuper, V., López-Otín, C., Smith, B., Knight, G., & Murphy, G. (1996). Biochemical characterization of human collagenase-3. Journal of Biological Chemistry, 271(3), 1544-5150. doi: 10.1074/jbc.271. 3.1544

Kupai, K., Szucs, G., Cseh, S., Hajdu, I., Csonka, C., Csont, T., & Ferdinandy, P. (2010). Matrix metalloproteinase activity assays: Importance of zymography. Journal of Pharmacology and Toxicology Methods, 61(2), 205-209. doi: 10.1016/j.vascn.2010.02.011

Kuzuya, M., & Iguchi, A. (2003). Role of matrix metalloproteinases in vascular remodeling. Journal of Atherosclerosis and Thrombosis, 10(5), 275-282. doi: 10.5551 / jat.10.275

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. doi: 10.1038/227680a0

Lara, M. C. C. S. H., Birgel, E. H., Jr., Fernandes, M. A., & Birgel, E. H. (2003). Infecção experimental do vírus da Artrite Encefalite dos caprinos em cabritos. Arquivos do Instituto Biológico, 70(1), 51-54. Recuperado de http://www.biologico.agricultura.sp.gov.br/uploads/docs/arq/V70_1/lara.pdf

Lofstedt, J. (2014). Overview of caprine arthritis and encephalitis. Retrieved from http://www. msdvetmanual.com/generalized-conditions/caprine-arthritis-and-encephalitis/overview-of-caprine-arthritis-and-encephalitis

Lopez-Avila, V., & Spencer, J. V. (2008). Methods for detection of matrix metalloproteinases as biomarkers in cardiovascular disease. Clinical Medicine Insights: Cardiology, 2(1), 75-87. doi: 10.4137/CMC.S484

Mannello, F., & Medda, V. (2012). Nuclear localization of matrix metalloproteinases, Progress in Histochemistry and Cytochemistry, 47(1), 27-58. doi: 10.1016/j.proghi.2011.12.002

Matrisian, L. M. (1990). Metalloproteinases and their inhibitors in matrix remodeling. Trends in Genetics, 6(4), 121-125. doi: 10.1016 / 0168-9525 (90) 90126-q

Navarro, V. P., Nelson, P., Fº., Silva, L. A. B., & Freitas, A. C. A. (2006). Participação das metaloproteinases da matriz nos processos fisiopatológicos da cavidade bucal. Revista de Odontologia da UNESP, Araraquara, 35(4), 233-238. Recuperado de http://www.revodontolunesp.com.br/article /588017de7f8c9d0a098b4951

Parks, W. C., & Mecham, R. P. (1998). Matrix metalloproteinases. San Diego: Academic Press.

Pereira, P. E. (2014). Caracterização das metaloproteinases (MMPs) no plasma seminal de caprinos sadios e infectados pelo vírus da artrite encefalite caprina (CAE). Dissertação de mestrado, Universidade Estadual Vale do Acaraú, Sobral, CE, Brasil. Recuperado de http://www.alice.cnptia.embrapa.br/alice/ bitstream/doc/1025854/1/CNPC2014Caracterizacaodasmetaloproteinades.pdf

Pinheiro, R. R., Gouveia, A. M. G., Alves, F. S. F., & Andrioli, A. (2004). Perfil de propriedades no estado do Ceará relacionado à presença do lentivírus caprino. Ciência Animal, 14(1), 29-37. Recuperado de http://www. uece.br/cienciaanimal/dmdocuments/Artigo3.2004.1.pdf

Pinto, T. M. F., Moreira, R. F., Matos, M. N. C., Soares, V. V. M., Aguiar, M. V. A., Aragão, P. T. T. D. de,... Cunha, R. M. S. (2019). Evaluation of the proteomic profiles of ejaculated spermatozoa from Saanen bucks (Capra hircus). Animal Reproduction, 16(4), 902-913. doi: 10.21451/1984-3143-ar2019-0001

Pugh, D. C. (2004). Clínica de ovinos e caprinos. São Paulo, SP: Roca.

Rimstad, E., East, N. E., Torten, M., Higgins, J., DeRock, E., & Pedersen, N. C. (1993). Delayed seroconversion following naturally acquired caprine arthritis-encephalitis virus infection in goats. American Journal of Veterinary Research, 54(11), 1858-1862. Retrieved from http://pubmed.ncbi.nlm. nih.gov/8291763/

Roach, H. I., Yamada, N., Cheung, K. S., Tilley, S., Clarke, N. M., Oreffo, R. O.,.. Bronner, F. (2005). Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis & Rheumatology, 52(10), 3110-3124. doi: 3110-3124. 10.1002/art.21300

Santos, K. F. dos, Eloy, A. M. X., Matos, M. N. C., Peixoto, R. M., Aragão, P. T. T. D., Pinheiro, R. R., & Cunha, R. M. S. da. (2019). Use of proteomics in the study of the acute phase of caprine arthritis encephalitis in seminal plasma. Small Ruminant Research, 181, 39-44. doi: 10.1016/j.smallrumres. 2019.10.004

Saracini, C., Bolli, P., Sticchi, E., Pratesi, G., Pulli, R., Sofi, F.,... Giusti, B. (2012). Polymorphisms of genes involved in extracellular matrix remodeling and abdominal aortic aneurysm. Journal of Vascular Surgery, 55(1), 171-179. doi: 10.1016 / j.jvs.2011.07.051

Spivak, A. M., Brennan, T. P., O’Connell, K. A., Sydnor, E., Williams, T. M., Siliciano, R. F.,… Blankson, J. N. (2010). A case of seronegative HIV‐1 infection. The Journal of Infectious Diseases, 201(3), 341-345. doi: 10.1086/649822

Stamenkovic, I. (2000). Matriz metalloproteinases in tumor invasion and metastasis. Seminars in Cancer Biology, 10(6), 415-433. doi: 10.1006/scbi.2000.0379

Takahashi, N., Sasaki, T., Tsouderos, Y., & Suda, T. (2003). S 12911-2 inhibits osteoclastic bone resorption in vitro. Journal of Bone Mineral Research, 18(6), 1082-1087. doi: 10.1359/jbmr.2003.18.6.1082

Vasku, A., Meluzín, J., Blahák, J., Kincl, V., Goldbergová, M. P., Sitar, J.,… Vítovec, J. (2012). Matrix metalloproteinase 13 genotype in rs640198 polymorphism is associated with severe coronary artery disease. Diseases Markers, 33(1), 43-49. doi: 10.3233 / DMA-2012-0902

Verma, R. P., & Hansch, C. (2007). Matrix metalloproteinases (MMPs): chemical-biological functions and (Q) SARs. Bioorganical Medicine Chemistry, 15(6), 2223-2268. doi: 10.1016 / j.bmc.2007.01.011

Vincenti, M. P., & Brinckerhoff, C. E. (2002). Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Research & Therapy, 4(3), 157-164. doi: 10.1186/ar401

Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circulation Research, 92(8), 827-839. doi: 10.1161/01.RES.000 0070112.80711.3D

Wang, M., Sampson, E. R., Jin, H., Li, J., Ke, Q. H., Im, H., & Chen, D. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Research & Therapy, 15(5), 1-11. doi: 10.1186/ ar4133

Woessner, J. F. (1991). Matrix metalloproteinases and their inhibitors in connective tissue remodeling. The Faseb Journal, 5(8), 2145-2154. doi: 10.1096 / fasebj.5.8.1850705

Ye, S., Patodi, N., Walker-Bone, K., Reading, I., Cooper, C., & Dennison, E. (2007). Variation in the matrix metalloproteinase-3, -7, -12 and -13 genes is associated with functional status in rheumatoid arthritis. International Journal of Immunogenetics, 34(2), 81-85. doi: 10.1111 / j.1744-313X.2007.00664.x

Yo, T. H., & Werb, Z. (1998). Gelatinase B: structure, regulation, and function. Matrix metalloproteinases (pp. 115-149). San Diego, CA: Academic Press.

Descargas

Publicado

2020-11-06

Cómo citar

Galiza, Y. S. de, Eloy, A. M. X., Pinheiro, R. R., Peixoto, R. M., Lima, A. M. C., Barroso, M. L. da S., & Fonseca, L. M. (2020). Study of metalloproteinases in the blood of goats experimentally infected with caprine encephalitis arthritis virus. Semina: Ciências Agrárias, 41(6Supl2), 3165–3176. https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3165

Número

Sección

Artigos

Artículos más leídos del mismo autor/a

<< < 1 2