Biodisponibilidade de Cu, Fe, Mn, e Zn em frações do solo
DOI:
https://doi.org/10.5433/1679-0359.2021v42n1p19Palavras-chave:
Extração sequencial. Disponibilidade, Micronutrientes catiônicos, Solo, Zea mays.Resumo
A biodisponibilidade dos micronutrientes catiônicos depende das características químicas das frações do solo. Quatorze solos receberam doses individuais de cinco micronutrientes (Cu, Fe, Mn, Zn, B) em sete tratamentos, estabelecidos conforme uma Matriz Baconiana. Os solos, com os tratamentos, foram incubados em vasos plásticos durante 15 dias, cultivando-se milho durante 30 dias, em três ciclos consecutivos. Amostras de solo e planta foram coletadas após cada ciclo de crescimento. Os metais foram determinados na parte aérea das plantas e correlacionados com sua disponibilidade no solo (DTPA/Mehlich-1) e concentrações nas frações do solo (extração sequencial). A distribuição dos metais disponíveis nas frações refletiu sua afinidade com os componentes do solo. O Cu disponível correlacionou-se com o ligado à matéria orgânica. Enquanto a fração trocável foi a principal fonte de Mn e Zn disponíveis, a disponibilidade de Fe esteve ligada às frações óxidos de Mn, óxidos de Fe, e fração trocável. As plantas absorveram o Cu, principalmente, das frações óxidos de Mn e matéria orgânica; o Mn das frações trocável e óxidos de Mn; e o Zn da fração trocável. As extrações com DTPA e Mehlich-1 se correlacionaram positivamente com Cu, Mn e Zn absorvidos pelas plantas.Downloads
Referências
Alloway, B. J. (2008). Zinc in soils and crop nutrition. Brussels, Belgium: IZA Publications.
Alvarez, V. V. H., & Ribeiro, A. C. (1999). Interpretação dos resultados das análises de solos. In A. C. Ribeiro, P. T. G. Gontijo, & V. H. Alvarez V. (Eds.), Recomendações para o uso de corretivos e fertilizantes em Minas Gerais (5ª aproximação, pp. 25-32). Viçosa, MG: CFSEMG.
Ayoubi, S., Mmenatkesh, A. M., Jalalian, A., Sahrawat, L., & Gheysari, M. (2014). Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes. Archives of Agronomy and Soil Science, 60,(5), 625-638. doi:10.1080/03650340.2013.825899
Barber, S. A. (1995). Soil nutrient bioavailability a mechanistic approach. New York, NY: John Wiley & Sons.
Borkert, C. M., Pavan, M. A., & Bataglia, O. C. (2001). Disponibilidade e avaliação de elementos catiônicos: Fe e Mn. In M. E., Ferreira, M. C., Cruz, B. van, Raij, & C. A. Abreu (eds.), Micronutrientes e elementos tóxicos na agricultura (pp. 151-186). Jaboticabal, SP: CNPq/FAPESP/POTAFOS.
Bull, L. T. (1993). Nutrição mineral do milho. In L. T., Bull, & H. Cantarella (Eds.), Cultura do milho; fatores que afetam a produtividade (pp. 63-145). Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato.
Dalpisol, M., Monte-Serrat, B., Motta, A. C. V., Poggere, G. C., Bittencourt, S., & Barbosa, J. Z. (2017). Zinc, copper and manganese availability in soils treated with alkaline sewage sludge from Parana state. Ciência e Agrotecnologia, 41(1), 85-97. doi: 10.1590/1413-70542017411036916
Defelipo, B. V., & Ribeiro, A. C. (1997). Análise química do solo (metodologia) (2a ed.). (Boletim de Extensão 29). Viçosa, MG: Núcleo de Difusão de Tecnologia, UFV.
Empresa Brasileira de Pesquisa Agropecuária (1997). Manual de métodos de análises de solos (2a ed.). Rio de Janeiro, RJ: EMBRAPA-CNPS.
Jordão, C. P., Fialho, L. L, Cecon, P. R., Neves, J. C. L., Mendonça, E. S., & Fontes, R. L. F. (2006). Effects of Cu, Ni and Zn on lettuce grown in metal-enriched vermicompost amended soil. Water, Air and Soil Pollution, 172, 21-38. doi: 10.1007/s11270-005-9030-9
Joshi, D., Srivastava, P. C., Dwivedi, R., Pachauri, S. P., & Shukla, A. K. (2015). Chemical speciation and suitability of soil extractants for assessing Cu availability to maize (Zea mays L.) in acidic soils. Journal of Soil Science and Plant Nutrition, 15(4), 1024-1034. doi: 10.4067/S0718-95162015005000071
Joshi, D., Srivastava, P. C., Dwivedi, R., Pachauri, S. P., & Shukla, A. K. (2017). Chemical fractions of mn in acidic soils and selection of suitable soil extractants for assessing Mn availability to maize (Zea Mays L.). Communications in Soil Science and Plant Analysis, 48(8), 886-897. doi: 10.1080/00103624. 2017.13 22 601
Leite, C. M. C., Muraoka, T., Colzato, M., & Alleoni, L. R. F. (2019). Soil-applied Zn effect on soil fractions. Scientia Agrícola, 77(2),1-10. doi: 10.1590/1678-992x-2018-0124
Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY: John Wiley and Sons.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal, 42(3), 421-428. doi: 10.2136/sssaj1978.03615995004200030009x
Lopes, A. S., Abreu, C. A. (2000). Micronutrientes na agricultura brasileira: evolução histórica e futura. In R. F. de, Novais, V. H., Alvarez V., & C. E. G. R. Schaefer (Eds.), Tópicos em ciência do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, v. 1, pp. 265-298.
Marschner, H. (2011). Mineral nutrition of higher plants (3nd ed.). London, UK: Academic Press.
Menezes, A. M., Dias, L. E., Neves. J. C. L., & Silva, J. V. O. (2010). Zinc availability for corn by Mehlich- 1, Mehlich-3 e DPTA extractors, in soils from Minas Gerais State, with and without liming. Revista Brasileira de Ciência do Solo, 34(2), 17-24. doi: 10.1590/S0100-06832010000200015
Mescouto, C. S. T., Lemos, V. P., Dantas, H. A., Fº., Costa, M. L., Kern, D. C., & Fernandes, K. G. (2011). Distribution and availability of Cu, Fe, Mn, and Zn in the archaeological black earth profile from the Amazon Region. Journal of the Brazilian Chemical Society, 22(8), 1484-1492. doi: 10.1590/S0103-5053 2011000800012
Minnich, M. M., & McBride, M. B. (1987). Copper activity in soil solution: I. Measurement by ion‐selective electrode and donnan dialysis. Soil Science Society of America Journal, 51(3), 568-572. doi: 10.2136/ sssaj1987.03615995005100030003x
Minnich, M. M., McBride, M. B., & Chaney, R. L. (1987). Copper activity in soil solution: II. Relation to copper accumulation in young snapbeans. Soil Science Society of America Journal, 51(3), 573-578. doi: 10.2136/sssaj1987.03615995005100030004x
Nascimento, C. W. A., & Fontes, R. L. F. (2004). Correlação entre características de Latossolos e parâmetros de equações de adsorção de cobre e zinco. Revista Brasileira de Ciência do Solo, 28(6), 965-971. doi: 10. 1590/S0100-06832004000600004
Nascimento, C. W. A., Fontes, R. L. F., & Melicio, A. C. F. D. (2003). Copper availability as related to soil Cu fractions in oxisols under liming. Scientia Agricola, 60(1), 167-173. doi: 10.1590/S0103-90162003 000100025
Nascimento, C. W. A., Fontes, R. L. F., & Neves, J. C. L. (2002a). Dessorção, extração e fracionamento de manganês em Latossolos. Revista Brasileira de Ciência do Solo, 26(3), 589-597. doi: 10.1590/S0100-06832002000300004.
Nascimento, C. W. A., Fontes, R. L. F., Neves, J. C. L., & Melicio, A. C. F. D. (2002b). Fracionamento, dessorção e extração química de zinco em Latossolos. Revista Brasileira de Ciência do Sol, 26(3), 599-606. doi: 10.1590/S0100-06832002000300004.
Oliveira, M. G., Novais, R. F., Neves, J. C. L., Vasconcelos, C. A., & Alves, V. M. (1999). Relação entre o zinco "disponível", por diferentes extratores, e as frações de zinco em amostras de solos. Revista Brasileira de Ciência do Solo, 23, 827-836.
Orroño, D. I., & Lavado, R. S. (2009). Distribution of extractable heavy metals in different soil fractions. Chemical Speciation and Bioavailability, 21(4), 193-198. doi: 10.3184/095422909X12473204137916
Oviasogie, P. O., Aghimien, A. E., & Ndiokwere, C. L. (2011). Fractionation and bioaccumulation of copper and zinc in wetland soils of the Niger Delta determined by the oil palm. Chemical Speciation and Bioavailability, 23(2), 96-109. doi: 10.3184/095422911X13028018264633
Raij, B. van, & Bataglia, O. C. (1991). Análise química do solo. In M. E. Ferreira, & M. C. P. Cruz (Eds.), Micronutrientes na agricultura (pp. 333-356). Piracicaba, SP: POTAFOS/CNPq.
Raij, B. van, Cantarella, H., Quaggio, J. A., & Furlani, A. M. C. (1996). Recomendações de adubação e calagem para o estado de São Paulo (2a ed.). Campinas, SP: IAC.
Resende, L. C. A. M., Bahia, A. F. C. Fº. & Braga, J. M. (1987). Mineralogia de latossolos estimada por alocação a partir do teor total de óxidos do ataque sulfúrico. Revista Brasileira de Ciência do Solo, 11(1-23.
Santos, H. G. dos, Coelho, M. R.; Anjos, L. H. C. dos, Jacomine, P. K. T., Oliveira, V. A. de, Lumbreras, J. F.... Fasolo, P. J. (2003). Propostas de revisão e atualização do Sistema Brasileiro de Classificação de Solos. (Embrapa Solos. Documentos, 53). Rio de Janeiro: Embrapa Solos.
Shahid, M., Shukla, A. K., Bhattcharyya, P., Tripathi, R., Mohanty, S., Kumar, A.,... Nayak, K. A. (2016). Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system. Journal of Soils and Sediment, 16, 737-747. doi: 10.1007/s11368-015-1272-6
Shober, A. L., Stehowertehouwer, R. C., & MacNeal, K. E. (2007). Chemical fractionation of trace elements biosolid-amended soils and correlation with trace elements in crop tissue. Communications in Soil Science and Plant Analysis, 38(7-8), 1029-1046. doi: 10.1080/00103620701280068
Shuman, L. M. (1985). Fractionation method for soil microelements. Soil Science Society of America Journal, 140(1), 11-22. doi: 10.1097/00010694-198507000-00003
Shuman, L. M. (1986). Effect of liming on the distribution of manganese, copper, iron, and zinc among soil fractions. Soil Science Society of America Journal, 86(50), 1236-1240. doi: 10.2136/sssaj1986.03615995 005000050030x
Sims, J. T. (1986). Soil pH effects on the distribution and plant availability of manganese, copper, iron and zinc. Soil Science Society of America Journal, 6(50), 367-373. doi: 10.2136/sssaj1986.036159950050 00020023x
Sims, J. T. & Johnson, G. V. (1991). Micronutrient soil tests. In: Micronutrients in Agriculture (pp. 427-476). J. J. Mortvedt, F. R. Cox, L. M. Shuman, & R. M. Welch (Eds.), (2nd ed.). (Books Series n. 4), Soil Science Society of America.
Turrent, F. A. (1979). Uso de una matriz mixta para la optimización de cinco a ocho factores controlables de la producción. (Boletim técnico, 6). Chapingo: Rama de Suelos, Colégio de Postgraduados.
Wali, A., Colinet, G., & Ksibi, M. (2014). Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in sfax, Tunisia. Environmental Research, Engineering and Management, 4(70), 14-26. doi: 10.5755/j01.erem.70.4.7807
Walna, B., Spychalski, W., & Ibragimow, A. (2010). Fractionation of Fe and Mn in the horizons of a nutrient-poor forest soil profile using the sequential extraction method. Polish Journal of Environmental Studies 19(5), 1029-1037.
Zazoski, R. J., & Burau, R. G. (1977). A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Communications in Soil Science and Plant Analysis, 8(1), 425-436. doi: 10.1080/001036277093 66735
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.