Bioavailability of soil Cu, Fe, Mn and Zn from soil fractions

Autores/as

  • Renildes Lucio Ferreira Fontes Universidade Federal de Viçosa
  • Gilvan Barbosa Ferreira Empresa Brasileira de Pesquisa Agropecuária
  • Victor Hugo Alvarez V. Universidade Federal de Viçosa
  • Júlio Cesar Lima Neves Universidade Federal de Viçosa
  • Arlindo Ferreira Faria Universidade Federal de Viçosa
  • Maurício Paulo Ferreira Fontes Universidade Federal de Viçosa

DOI:

https://doi.org/10.5433/1679-0359.2021v42n1p19

Palabras clave:

Availability, Cationic micronutrients, Sequential extraction, Soil, Zea mays.

Resumen

Cationic micronutrients bioavailability depends on the chemical characteristics of soil fractions. Fourteen soils received individual doses of five micronutrients (Cu, Fe, Mn, Zn, B) arranged in seven treatments set according a Baconian Matrix. The soils incubated with treatments during 15 days had corn cultivated in greenhouse for 30 days, in three consecutive growth cycles. The cationic micronutrients were determined in the corn shoots after each growth cycle. Soil samples collected before the first and after each growth cycle had the available concentrations of Cu, Fe, Mn and Zn determined by single extractions (Mehlich-1 and DTPA-pH 7.3) and by sequential extraction. Correlation analysis was performed for the Cu, Fe, Mn and Zn concentrations determined in the corn shoots, the available concentrations of Cu, Fe, Mn and Zn in the soils (Mehlich-1 and DTPA) and the concentrations of Cu, Fe, Mn and Zn in the soil fractions (sequential extraction). The distribution of available metals forms in fractions reflected their affinity with soil components. Soil available Cu correlated with Cu bound to organic matter. The exchangeable fraction was the main source of soil available Mn and Zn. The Fe availability related mainly to the Mn oxides, Fe oxides, and exchangeable fractions. The plants absorbed Cu mainly from the Mn-oxides and organic matter fractions. Manganese absorbed by plants originated from the exchangeable and Mn-oxides fractions. The Zn absorbed by plants originated mainly from the exchangeable fraction. Correlations of single metal extractions (Mehlich-1 and DTPA) with Cu, Mn and Zn contents in plants were positive.

Biografía del autor/a

Renildes Lucio Ferreira Fontes, Universidade Federal de Viçosa

Prof., Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Gilvan Barbosa Ferreira, Empresa Brasileira de Pesquisa Agropecuária

Pesquisador, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, Campina Grande, PB, Brasil.

Victor Hugo Alvarez V., Universidade Federal de Viçosa

Prof., Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Júlio Cesar Lima Neves, Universidade Federal de Viçosa

Prof., Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Arlindo Ferreira Faria, Universidade Federal de Viçosa

Discente do Curso de Doutorado do Programa de Pós-Graduação em Solos e Nutrição de Plantas, PPGSNP, UFV, Viçosa, MG, Brasil.

Maurício Paulo Ferreira Fontes, Universidade Federal de Viçosa

Prof., Universidade Federal de Viçosa, UFV, Viçosa, MG, Brasil.

Citas

Abreu, C. A, Ferreira, M. E., & Borkert, C. M. (2001). Disponibilidade e avaliação de elementos catiônicos: Zinco e Cobre. In M. E. Ferreira, M. C. Cruz, B. van, Raij, & C. A. Abreu (Eds.), Micronutrientes e elementos tóxicos na agricultura (pp. 125-151). Jaboticabal: CNPq/FAPESP/POTAFOS.

Alloway, B. J. (2008). Zinc in soils and crop nutrition. Brussels, Belgium: IZA Publications.

Alvarez, V. V. H., & Ribeiro, A. C. (1999). Interpretação dos resultados das análises de solos. In A. C. Ribeiro, P. T. G. Gontijo, & V. H. Alvarez V. (Eds.), Recomendações para o uso de corretivos e fertilizantes em Minas Gerais (5ª aproximação, pp. 25-32). Viçosa, MG: CFSEMG.

Ayoubi, S., Mmenatkesh, A. M., Jalalian, A., Sahrawat, L., & Gheysari, M. (2014). Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes. Archives of Agronomy and Soil Science, 60,(5), 625-638. doi:10.1080/03650340.2013.825899

Barber, S. A. (1995). Soil nutrient bioavailability a mechanistic approach. New York, NY: John Wiley & Sons.

Borkert, C. M., Pavan, M. A., & Bataglia, O. C. (2001). Disponibilidade e avaliação de elementos catiônicos: Fe e Mn. In M. E., Ferreira, M. C., Cruz, B. van, Raij, & C. A. Abreu (eds.), Micronutrientes e elementos tóxicos na agricultura (pp. 151-186). Jaboticabal, SP: CNPq/FAPESP/POTAFOS.

Bull, L. T. (1993). Nutrição mineral do milho. In L. T., Bull, & H. Cantarella (Eds.), Cultura do milho; fatores que afetam a produtividade (pp. 63-145). Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato.

Dalpisol, M., Monte-Serrat, B., Motta, A. C. V., Poggere, G. C., Bittencourt, S., & Barbosa, J. Z. (2017). Zinc, copper and manganese availability in soils treated with alkaline sewage sludge from Parana state. Ciência e Agrotecnologia, 41(1), 85-97. doi: 10.1590/1413-70542017411036916

Defelipo, B. V., & Ribeiro, A. C. (1997). Análise química do solo (metodologia) (2a ed.). (Boletim de Extensão 29). Viçosa, MG: Núcleo de Difusão de Tecnologia, UFV.

Empresa Brasileira de Pesquisa Agropecuária (1997). Manual de métodos de análises de solos (2a ed.). Rio de Janeiro, RJ: EMBRAPA-CNPS.

Jordão, C. P., Fialho, L. L, Cecon, P. R., Neves, J. C. L., Mendonça, E. S., & Fontes, R. L. F. (2006). Effects of Cu, Ni and Zn on lettuce grown in metal-enriched vermicompost amended soil. Water, Air and Soil Pollution, 172, 21-38. doi: 10.1007/s11270-005-9030-9

Joshi, D., Srivastava, P. C., Dwivedi, R., Pachauri, S. P., & Shukla, A. K. (2015). Chemical speciation and suitability of soil extractants for assessing Cu availability to maize (Zea mays L.) in acidic soils. Journal of Soil Science and Plant Nutrition, 15(4), 1024-1034. doi: 10.4067/S0718-95162015005000071

Joshi, D., Srivastava, P. C., Dwivedi, R., Pachauri, S. P., & Shukla, A. K. (2017). Chemical fractions of mn in acidic soils and selection of suitable soil extractants for assessing Mn availability to maize (Zea Mays L.). Communications in Soil Science and Plant Analysis, 48(8), 886-897. doi: 10.1080/00103624. 2017.13 22 601

Leite, C. M. C., Muraoka, T., Colzato, M., & Alleoni, L. R. F. (2019). Soil-applied Zn effect on soil fractions. Scientia Agrícola, 77(2),1-10. doi: 10.1590/1678-992x-2018-0124

Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY: John Wiley and Sons.

Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal, 42(3), 421-428. doi: 10.2136/sssaj1978.03615995004200030009x

Lopes, A. S., Abreu, C. A. (2000). Micronutrientes na agricultura brasileira: evolução histórica e futura. In R. F. de, Novais, V. H., Alvarez V., & C. E. G. R. Schaefer (Eds.), Tópicos em ciência do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, v. 1, pp. 265-298.

Marschner, H. (2011). Mineral nutrition of higher plants (3nd ed.). London, UK: Academic Press.

Menezes, A. M., Dias, L. E., Neves. J. C. L., & Silva, J. V. O. (2010). Zinc availability for corn by Mehlich- 1, Mehlich-3 e DPTA extractors, in soils from Minas Gerais State, with and without liming. Revista Brasileira de Ciência do Solo, 34(2), 17-24. doi: 10.1590/S0100-06832010000200015

Mescouto, C. S. T., Lemos, V. P., Dantas, H. A., Fº., Costa, M. L., Kern, D. C., & Fernandes, K. G. (2011). Distribution and availability of Cu, Fe, Mn, and Zn in the archaeological black earth profile from the Amazon Region. Journal of the Brazilian Chemical Society, 22(8), 1484-1492. doi: 10.1590/S0103-5053 2011000800012

Minnich, M. M., & McBride, M. B. (1987). Copper activity in soil solution: I. Measurement by ion‐selective electrode and donnan dialysis. Soil Science Society of America Journal, 51(3), 568-572. doi: 10.2136/ sssaj1987.03615995005100030003x

Minnich, M. M., McBride, M. B., & Chaney, R. L. (1987). Copper activity in soil solution: II. Relation to copper accumulation in young snapbeans. Soil Science Society of America Journal, 51(3), 573-578. doi: 10.2136/sssaj1987.03615995005100030004x

Nascimento, C. W. A., & Fontes, R. L. F. (2004). Correlação entre características de Latossolos e parâmetros de equações de adsorção de cobre e zinco. Revista Brasileira de Ciência do Solo, 28(6), 965-971. doi: 10. 1590/S0100-06832004000600004

Nascimento, C. W. A., Fontes, R. L. F., & Melicio, A. C. F. D. (2003). Copper availability as related to soil Cu fractions in oxisols under liming. Scientia Agricola, 60(1), 167-173. doi: 10.1590/S0103-90162003 000100025

Nascimento, C. W. A., Fontes, R. L. F., & Neves, J. C. L. (2002a). Dessorção, extração e fracionamento de manganês em Latossolos. Revista Brasileira de Ciência do Solo, 26(3), 589-597. doi: 10.1590/S0100-06832002000300004.

Nascimento, C. W. A., Fontes, R. L. F., Neves, J. C. L., & Melicio, A. C. F. D. (2002b). Fracionamento, dessorção e extração química de zinco em Latossolos. Revista Brasileira de Ciência do Sol, 26(3), 599-606. doi: 10.1590/S0100-06832002000300004.

Oliveira, M. G., Novais, R. F., Neves, J. C. L., Vasconcelos, C. A., & Alves, V. M. (1999). Relação entre o zinco "disponível", por diferentes extratores, e as frações de zinco em amostras de solos. Revista Brasileira de Ciência do Solo, 23, 827-836.

Orroño, D. I., & Lavado, R. S. (2009). Distribution of extractable heavy metals in different soil fractions. Chemical Speciation and Bioavailability, 21(4), 193-198. doi: 10.3184/095422909X12473204137916

Oviasogie, P. O., Aghimien, A. E., & Ndiokwere, C. L. (2011). Fractionation and bioaccumulation of copper and zinc in wetland soils of the Niger Delta determined by the oil palm. Chemical Speciation and Bioavailability, 23(2), 96-109. doi: 10.3184/095422911X13028018264633

Raij, B. van, & Bataglia, O. C. (1991). Análise química do solo. In M. E. Ferreira, & M. C. P. Cruz (Eds.), Micronutrientes na agricultura (pp. 333-356). Piracicaba, SP: POTAFOS/CNPq.

Raij, B. van, Cantarella, H., Quaggio, J. A., & Furlani, A. M. C. (1996). Recomendações de adubação e calagem para o estado de São Paulo (2a ed.). Campinas, SP: IAC.

Resende, L. C. A. M., Bahia, A. F. C. Fº. & Braga, J. M. (1987). Mineralogia de latossolos estimada por alocação a partir do teor total de óxidos do ataque sulfúrico. Revista Brasileira de Ciência do Solo, 11(1-23.

Santos, H. G. dos, Coelho, M. R.; Anjos, L. H. C. dos, Jacomine, P. K. T., Oliveira, V. A. de, Lumbreras, J. F.... Fasolo, P. J. (2003). Propostas de revisão e atualização do Sistema Brasileiro de Classificação de Solos. (Embrapa Solos. Documentos, 53). Rio de Janeiro: Embrapa Solos.

Shahid, M., Shukla, A. K., Bhattcharyya, P., Tripathi, R., Mohanty, S., Kumar, A.,... Nayak, K. A. (2016). Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system. Journal of Soils and Sediment, 16, 737-747. doi: 10.1007/s11368-015-1272-6

Shober, A. L., Stehowertehouwer, R. C., & MacNeal, K. E. (2007). Chemical fractionation of trace elements biosolid-amended soils and correlation with trace elements in crop tissue. Communications in Soil Science and Plant Analysis, 38(7-8), 1029-1046. doi: 10.1080/00103620701280068

Shuman, L. M. (1985). Fractionation method for soil microelements. Soil Science Society of America Journal, 140(1), 11-22. doi: 10.1097/00010694-198507000-00003

Shuman, L. M. (1986). Effect of liming on the distribution of manganese, copper, iron, and zinc among soil fractions. Soil Science Society of America Journal, 86(50), 1236-1240. doi: 10.2136/sssaj1986.03615995 005000050030x

Sims, J. T. (1986). Soil pH effects on the distribution and plant availability of manganese, copper, iron and zinc. Soil Science Society of America Journal, 6(50), 367-373. doi: 10.2136/sssaj1986.036159950050 00020023x

Sims, J. T. & Johnson, G. V. (1991). Micronutrient soil tests. In: Micronutrients in Agriculture (pp. 427-476). J. J. Mortvedt, F. R. Cox, L. M. Shuman, & R. M. Welch (Eds.), (2nd ed.). (Books Series n. 4), Soil Science Society of America.

Turrent, F. A. (1979). Uso de una matriz mixta para la optimización de cinco a ocho factores controlables de la producción. (Boletim técnico, 6). Chapingo: Rama de Suelos, Colégio de Postgraduados.

Wali, A., Colinet, G., & Ksibi, M. (2014). Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in sfax, Tunisia. Environmental Research, Engineering and Management, 4(70), 14-26. doi: 10.5755/j01.erem.70.4.7807

Walna, B., Spychalski, W., & Ibragimow, A. (2010). Fractionation of Fe and Mn in the horizons of a nutrient-poor forest soil profile using the sequential extraction method. Polish Journal of Environmental Studies 19(5), 1029-1037.

Zazoski, R. J., & Burau, R. G. (1977). A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Communications in Soil Science and Plant Analysis, 8(1), 425-436. doi: 10.1080/001036277093 66735

Descargas

Publicado

2021-01-19

Cómo citar

Fontes, R. L. F., Ferreira, G. B., Alvarez V., V. H., Neves, J. C. L., Faria, A. F., & Fontes, M. P. F. (2021). Bioavailability of soil Cu, Fe, Mn and Zn from soil fractions. Semina: Ciências Agrárias, 42(1), 19–42. https://doi.org/10.5433/1679-0359.2021v42n1p19

Número

Sección

Artigos

Artículos más leídos del mismo autor/a