Resíduos de pesticidas na Cebola Junca (Allium fistulosum) cultivada em Risaralda, Colômbia

Autores

  • Juan Pablo Arrubla Velez Universidad Tecnológica de Pereira
  • Nathaly Villa Pulgarín Universidad Tecnológica de Pereira http://orcid.org/0000-0003-1190-8391
  • Eddi Arsail Grisales Betancur Universidad Tecnológica de Pereira
  • Jose Manuel Grisales Bedoya Universidad Tecnológica de Pereira
  • Melissa Andrea Gómez Benitez Universidad Tecnológica de Pereira
  • Gloria Edith Guerrero Álvarez Universidad Tecnológica de Pereira
  • Diego Paredes Cuervo Universidad Tecnológica de Pereira

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5supl1p1875

Palavras-chave:

Allium fistulosum, Cromatografia, Pesticidas.

Resumo

Em 2050 a população mundial chegará a 9.2 bilhões, aumentando a demanda por alimentos em duas vezes. Diminuir as perdas devido a pragas ainda é um desafio, onde os pesticidas desempenham um papel importante, mas seu uso indiscriminado faz com que quantidades residuais inadequadas estejam presentes nos alimentos. Este estudo tem como objetivo monitorar a concentração residual de pesticidas organoclorados e organofosforados em cebola junca (Allium fistulosum) cultivada na Colômbia, como ou uso de GC-MS. O método usado tem alta sensibilidade (LOD: 0.11-7.15 µg kg-1), precisão aceitável precision (RSD: 0.83-1.35%) e percentagens de recuperações entre 46.32% - 118.67%. Pesticidas clorados proibidos pela Convenção de Roterdã foram encontrados nas amostras com concentrações acima de 221.22 ?g kg-1, enquanto endrin com uma concentração de 469.23 ?g kg-1 e seus produtos de degradação que excedem o limite máximo de resíduos (LMR) para amostras de plantas. De acordo com o LMR do Codex Alimentarius, constatou-se que 73.1% das amostras têm residual superior ao limite permitido de pesticidas organoclorados em mais de 40 vezes, o que representa um risco para a saúde humana e ecossistema. Monitoramento contínuo e rigoroso controle governamental são necessários para reduzir a exposição de seres humanos e outros seres vivos.

Métricas

Carregando Métricas ...

Biografia do Autor

Juan Pablo Arrubla Velez, Universidad Tecnológica de Pereira

Prof. Dr., Escola de Tecnologia Química, Grupo de Pesquisa Oleoquímico, Universidad Tecnológica de Pereira, Pereira, Colombia.

Nathaly Villa Pulgarín, Universidad Tecnológica de Pereira

Assistente de Investigação, Grupo de Pesquisa Oleoquímico, Universidad Tecnológica de Pereira, Pereira, Colombia.

Eddi Arsail Grisales Betancur, Universidad Tecnológica de Pereira

Química Industrial, Escola de Tecnologia Química, Grupo de Pesquisa Oleoquímico, Universidad Tecnológica de Pereira, Pereira, Colombia.

Jose Manuel Grisales Bedoya, Universidad Tecnológica de Pereira

Química Industrial, Escola de Tecnologia Química, Grupo de Pesquisa Oleoquímico, Universidad Tecnológica de Pereira, Pereira, Colombia.

Melissa Andrea Gómez Benitez, Universidad Tecnológica de Pereira

Dr. Assistente de Investigação Faculdade de Ciências Ambientais Grupo de Pesquisa em Água e Saneamento, Universidad Tecnológica de Pereira, Pereira, Colombia.

Gloria Edith Guerrero Álvarez, Universidad Tecnológica de Pereira

Prof. Dr., Escola de Tecnologia Química, Grupo de Pesquisa Oleoquímico, Universidad Tecnológica de Pereira, Pereira, Colombia.

Diego Paredes Cuervo, Universidad Tecnológica de Pereira

Prof. Dr., Faculdade de Ciências Ambientais Grupo de Pesquisa em Água e Saneamento, Universidad Tecnológica de Pereira, Pereira, Colombia.

Referências

Acosta Rodrigues, S., Souza Caldas, S., & Primel, E. G. (2010). A simple; efficient and environmentally friendly method for the extraction of pesticides from onion by matrix solid-phase dispersion with liquid chromatography tandem mass spectrometric detection. Analytica Chimica Acta, 678(1), 82-89. doi: 10.1016/j.aca.2010.08.026

Ahmed, F. E. (2001). Analyses of pesticides and their metabolites in foods and drinks. TrAC Trends in Analytical Chemistry, 20(11), 649-661. doi:10.1016/S0165-9936(01)00121-2

Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. doi:10.2478/v10102-009-0001-7

Alamgir Zaman Chowdhury, M., Fakhruddin, A. N. M., Nazrul Islam, M., Moniruzzaman, M., Gan, S. H., & Khorshed Alam, M. (2013). Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography mass spectrometry. Food Control, 34(2), 457-465. doi: 10.1016/j.foodcont.2013.05.006

Alder, L., Greulich, K., Kempe, G., & Vieth, B. (2006). Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS? Mass Spectrometry Reviews. 25(6):838-65. doi: 10.1002/mas.20091

Arias, H. F, Arrubla, J. P, & Giraldo, A. I. (2018). Cálculo de la incertidumbre en la determinación de plaguicidas organoclorados y triazoles en café verde por GC-MS. Revista Facultad de Ciencias Basicas, 14(1), 1-9. doi:10.18359/rfcb.3126

Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science & Technology, 43(3), 597-603. doi: 10.1016/S0021-9673(96)00297-X

Biziuk, B. M., Przyjazny, A., Czerwmskl, J., & Wiergowski, M. (1996). Occurrence and determination of pesticides in natural and treated waters. Journal of Chromatography A, 754, 103-123. doi: 10.1016/S0021-9673(96)00297-X

Carvalho, F. P., Nhan, D. D., Zhong, C., Tavares, T., & Klaine, S. (1998). Result of an International Research Porject Tracking Pesticides in the Tripocs. IAEA BULLETIN, 40(3), 1-7.

Departamento Administrativo Nacional de Estadísticas, DANE. (2015). Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria, 35. Bogotá, Colombia.

Dramiñski, W., & Zagorzycki, J. (1984). Evaluación de residuos de plaguicidas organoclorados y organofosforados en granos. Asociación Venezolana para el Avance de la Ciencia. Acta Científica Venezolana, 35(1), 69-78. Recuperado de http://ve.scielo.org/scielo.php?script=sci_arttext&pid= S1316-33612007000200002&lng=es&nrm=iso

Food and Agriculture Organization (1998). Rotterdam Convention. On the prior informed consent procedure for certain hazardous chemicals and pesticides in international trade. Rotterdam, Netherland: Rotterdam Convention Secretariat, United Nations Environment Programme (UNEP) Retrieved from http://www.pic.int/TheConvention/Overview/TextoftheConvention/ tabid/1048/ language/en-US/Default.aspx

Food and Agriculture Organization (2004). Pesticide residues in food 2004. Evaluations. Part I - Residues. Roma, Italia: Rotterdam Convention Secretariat, Food and Agriculture Organization of the United Nations (FAO). Retrieved from http://www.fao.org/fileadmin/templates/agphome/ documents/ Pests_Pesticides/JMPR/Evaluation04/JMPR2004eva.pdf

Food and Agriculture Organization (2009). Feeding the world in 2050. World agricultural summit on food security. Rome: Food and Agriculture Organization of the United Nations

Food and Agriculture Organization (2017). CODEX Alimentarius: Pesticide MRLs. Food and Agriculture Organization of the United Nations, World Health Organization. Retrieved from http://www.fao.org/fao-who-codexalimentarius/standards/pesticide-mrls/en/

Food and Agriculture Organization of the United Nations (2016). CROPS-FAOSTAT. Countries - Select All; Regions - World + (Total); Elements - Production Quantity; Items - Onion, dry + Onions, shallots, green. Retrieved from http://www.fao.org/faostat/en/#data/QC/visualize

Gamón, M., Lleó, C., & Ten, A. (2001). Multiresidue Determination of Pesticides in Fruit and Vegetables by Gas Chromatography/Tandem Mass Spectrometry. Journal of AOAC International, 84(4), 1209-1216. Retrieved from http://lib3.dss.go.th/fulltext/Journal/J.AOAC1999-2003/ J.AOAC2001/v84n4(jul-aug)/v84n4p1209.pdf

Geerdink, R. B., Niessen, W. M. A., & Brinkman, U. A. T. (2002). Trace-level determination of pesticides in water by means of liquid and gas chromatography. Journal of Chromatography A, 970(1–2), 65-93. doi: 10.1016/S0021-9673(02)00234-0

Gent, D. H., du Toit, L. J., Fichtner, S. F., Mohan, S. K., Pappu, H. R., & Schwartz, H. F. (2006). Iris yellow spot virus: An Emerging Threat to Onion Bulb and Seed Production. Plant Disease, 90(12), 1468-1480. doi: 10.1094/PD-90-1468

Giraldo Rivera, A. I., Guerrero Alvarez, G. E., Arrubla, J. P., Baena, L. M, Paredes Cuervo, D., & Gomez Benitez, M. A. (2020) The effects of Annonaceae and Amaryllidaceae extracts in controlling the Thrips tabaci Lindeman (Thysanoptera: Thripidae). Revista Brasileira de Ciências Agrárias, 15(2), e6933, 1-9. doi: 10.5039/agraria.v15i2a6933

Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Energy and Environmental Issues in Organic and Conventional Agriculture. Critical Reviews in Plant Sciences, 27(4), 239-254. doi: 10.1080/ 07352680802225456

Goujon, E., Sta, C., Trivella, A., Goupil, P., Richard, C., & Ledoigt, G. (2014). Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pesticide Biochemistry and Physiology, 113, 47-54. doi: 10.1016/j.pestbp.2014.06.002

Guan, W., Li, C., Liu, X., Zhou, S., & Ma, Y. (2014). Graphene as dispersive solidphase extraction materials for pesticides LC-MS/MS multi-residue analysis in leek, onion and garlic. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 31(2), 250-261. doi: 10.1080/19440049.2013.865278

Hajjo, R. M., Afifi, F. U., & Battah, A. H. (2007). Multiresidue pesticide analysis of the medicinal plant Origanum syriacum. Food Additives and Contaminants, 24(3), 274-279. doi: 10.1080/ 02652030600986198

Kruve, A., Künnapas, A., Herodes, K., & Leito, I. (2008). Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1187(1-2), 58-66. doi: 10.1016/j.chroma.2008.01.077

Li, J., Liu, D., Wu, T., Zhao, W., Zhou, Z., & Wang, P. (2014). A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chemistry, 151, 47-52. doi: 10.1016/j.foodchem.2013.11.047

Naqvi, S. M., & Vaishnavi, C. (1993). Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, 105(3), 347-361. doi: 10.1016/0742-8413(93)90071-R

Ozcan, C. (2016). Determination of organochlorine pesticides in some vegetable samples using GC-MS. Polish Journal of Environmental Studies, 25(3), 1141-1147. doi: 10.15244/pjoes/61627

Peterson, P. M., Annable, C. R., & Rieseberg, L. H. (1988). Systematic Relationships and Nomenclatural Changes in the Allium douglasii Complex (Alliaceae). Systematic Botany, 13(2), 207. doi: 10.2307/2419099

Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33(1), 243-255. doi: 10.1007/s13593-012-0105-x

Quintero, A., Caselles, M. J., Ettiene, G., De Colmenares, N. G., Ramírez, T., & Medina, D. (2008). Monitoring of organophosphorus pesticide residues in vegetables of agricultural area in Venezuela. Bulletin of Environmental Contamination and Toxicology, 81(4), 393-396. doi: 10.1007/s00128-008-9511-9

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi: 10.1371/journal. pone.0066428

Sapbamrer, R., & Hongsibsong, S. (2014). Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of Northern Thailand. Archives of Environmental Contamination and Toxicology, 67(1), 60-67. doi: 10.1007/s00244-014-0014-x

Scherbaum, E., Anastassiades, M., Schüle, E., Bauer, N., Ellendt, K., & Wieland, M. (2008). Evaluation based on Residue Findings GC-MS or LC-MS(/MS)-Which Technique is More Essential? Chemisches und Veterinäruntersuchungsamt | Stuttgart EPRW 2008 (25), 1.

Sinclair, C. J., & Boxall, A. (2003). Assessing the Ecotoxicity of Pesticide Transformation Products. Environmental Science & Technology, 37(20), 4617-4625. doi: 10.1021/ES030038M

Sishu, F. K., Thegaye, E. K., Schmitter, P., Habtu, N. G., Tilahun, S. A., & Steenhuis, T. S. (2020). Endosulfan pesticide dissipation and residue levels in khat and onion in a sub-humid region of Ethiopia. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 308, 16-28. doi: 10.1007/978-3-030-43690-2_2

Skovgaard, M., Renjel Encinas, S., Jensen, O. C., Andersen, J. H., Condarco, G., & Jørs, E. (2017). Pesticide Residues in Commercial Lettuce, Onion, and Potato Samples from Bolivia A Threat to Public Health? Environmental Health Insights, 11, 1-8. doi: 10.1177/1178630217704194

Soler, C., Mañes, J., & Picó, Y. (2005). Routine application using single quadrupole liquid chromatography-mass spectrometry to pesticides analysis in citrus fruits. Journal of Chromatography A, 1088(1-2), 224-233. doi: 10.1016/j.chroma.2005.03.106

Stachniuk, A., & Fornal, E. (2016). Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Analytical Methods, 9(6), 1654-1665. doi: 10.1007/s12161-015-0342-0

Tien, C. J., Lin, M. C., Chiu, W. H., & Chen, C. S. (2013). Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure. Environmental Pollution, 179, 95-104. doi: 10.1016/J.ENVPOL.2013.04.009

Xu, D., Liang, D., Guo, Y., & Sun, Y. (2018). Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environmental Pollution, 238, 1048-1055. doi: 10.1016/j.envpol.2018.03.044

Downloads

Publicado

2020-08-07

Como Citar

Velez, J. P. A., Pulgarín, N. V., Betancur, E. A. G., Bedoya, J. M. G., Benitez, M. A. G., Álvarez, G. E. G., & Cuervo, D. P. (2020). Resíduos de pesticidas na Cebola Junca (Allium fistulosum) cultivada em Risaralda, Colômbia. Semina: Ciências Agrárias, 41(5supl1), 1875–1896. https://doi.org/10.5433/1679-0359.2020v41n5supl1p1875

Edição

Seção

Artigos