Criterios de calidad de los datos sanitarios: un análisis cuantitativo resumen
DOI:
https://doi.org/10.5433/1981-8920.2022v27n2p466Palabras clave:
Calidad de los datos, Criterios de calidad de los datos, Calidad de los datos sanitários, SaludResumen
Objetivo: Este artículo propone una reflexión sobre cómo los criterios de calidad de los datos han sido abordados en trabajos que discuten datos del área de la salud, posibilitando reconocer el panorama sobre esos criterios e identificar los vacíos que requieren mayores esfuerzos.
Metodología: Los procedimientos metodológicos consisten en una revisión sistemática de la literatura que buscó identificar, analizar y cuantificar los criterios de calidad de los datos que se abordan en el área de la salud.
Resultados: Como resultados se presentan los criterios de calidad de los datos mapeados y categorizados, identificando la exactitud, consistencia e integridad como los criterios más abordados y la oportunidad, la temporalidad, confidencialidad y plausibilidad, siendo los menos mencionados.
Conclusiones: Se concluye que existe tanto la sobrecarga como la falta de uso de ciertos criterios, por tanto, los criterios que presentaron esta carencia generan la posibilidad de ser mejor abordados y explorados en trabajos futuros y, además, no se puede descartar la relevancia de estos. fuera de criterios, considerando que su aplicación depende de escenarios y situaciones específicas.
Descargas
Citas
ALI, Farman et al. A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion, v. 63, p. 208-222, 2020.
ALMUTIRY, Omar; WILLS, Gary; CROWDER, Richard. Towards a framework for data quality in electronic health records. IADIS International Conference, e-Society, Lisbon, Portugal. 2013.
BARON, Richard J. Quality improvement with an electronic health record: achievable, but not automatic. Annals of internal medicine, v. 147, n. 8, p. 549-552, 2007.
BOVEE, Matthew; SRIVASTAVA, Rajendra P.; MAK, Brenda. A conceptual framework and belief‐function approach to assessing overall information quality. International journal of intelligent systems, v. 18, n. 1, p. 51-74, 2003.
BOWMAN, Sue. Impact of electronic health record systems on information integrity: quality and safety implications. Perspectives in health information management, v. 10, n. Fall, 2013.
BROWN, Philip JB; WARMINGTON, Victoria. Data quality probes—exploiting and improving the quality of electronic patient record data and patient care. International journal of medical informatics, v. 68, n. 1-3, p. 91-98, 2002.
BYRD, James Brian et al. Data quality of an electronic health record tool to support VA cardiac catheterization laboratory quality improvement: the VA Clinical Assessment, Reporting, and Tracking System for Cath Labs (CART) program. American heart journal, v. 165, n. 3, p. 434-440, 2013.
CHAN, Kitty S.; FOWLES, Jinnet B.; WEINER, Jonathan P. Electronic health records and the reliability and validity of quality measures: a review of the literature. Medical Care Research and Review, v. 67, n. 5, p. 503-527, 2010.
COLQUHOUN, Douglas A. et al. Considerations for integration of perioperative electronic health records across institutions for research and quality improvement: the approach taken by the Multicenter Perioperative Outcomes Group. Anesthesia and analgesia, v. 130, n. 5, p. 1133, 2020.
CONEGLIAN, C. S.; DIEGER, R.; SEGUNDO, J. E. S.; CAPRETZ, M. A. M. O papel da web semântica nos processos da big data. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação, v. 23, n. 53, p. 137-146, 2018. Disponível em: http://www.brapci.inf.br/index.php/res/v/39601. Acesso em: 02 setembro 2020.
DIXON, Brian E.; MCGOWAN, Julie J.; GRANNIS, Shaun J. Electronic laboratory data quality and the value of a health information exchange to support public health reporting processes. In: AMIA annual symposium proceedings. American Medical Informatics Association, 2011. p. 322.
DOKTORCHIK, Chelsea et al. A qualitative evaluation of clinically coded data quality from health information manager perspectives. Health Information Management Journal, v. 49, n. 1, p. 19-27, 2020.
DUARTE, Julio et al. Data quality evaluation of electronic health records in the hospital admission process. In: 2010 IEEE/ACIS 9th International Conference on Computer and Information Science. IEEE, 2010. p. 201-206.
DZIADKOWIEC, Oliwier et al. Using a data quality framework to clean data extracted from the electronic health record: a case study. eGEMs, v. 4, n. 1, 2016.
FONTES-PEREIRA, A. Revisão Sistemática da Literatura: Como Escrever um Artigo Científico em 72 Horas. Rio de Janeiro: Edição do Kindle., 2017.
FÜRBER, Christian. Data Quality in the Semantic Web. In: Data Quality Management with Semantic Technologies. Springer Gabler, Wiesbaden, 2016.
HUANG, Shih-Cheng et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital medicine, v. 3, n. 1, p. 1-9, 2020.
HUANG, Shih-Cheng et al. Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Scientific reports, v. 10, n. 1, p. 1-9, 2020.
JARKE, Matthias et al. ConceptBase—a deductive object base for meta data management. Journal of Intelligent Information Systems, v. 4, n. 2, p. 167-192, 1995.
KAHN, Michael G. et al. A pragmatic framework for single-site and multisite data quality assessment in electronic health record-based clinical research. Medical care, v. 50, 2012.
LEMMA, Seblewengel et al. Improving quality and use of routine health information system data in low-and middle-income countries: A scoping review. PloS one, v. 15, n. 10, p. e0239683, 2020.
LIAW S-T et al. Integrating electronic health record information to support integrated care: Practical application of ontologies to improve the accuracy of diabetes disease registers. J Biomed Inform, 2014.
LIU, Liping; CHI, Lauren. Evolutional Data Quality: A Theory-Specific View. In: ICIQ. 2002. p. 292-304.
NDIRA, S. P.; ROSENBERGER, K. D.; WETTER, T. Assessment of data quality of and staff satisfaction with an electronic health record system in a developing country (Uganda). Methods of information in medicine, v. 47, n. 06, p. 489-498, 2008.
MIETTINEN, Merja; KORHONEN, Maritta. Information quality in healthcare: coherence of data compared between organization's electronic patient records. In: 2008 21st IEEE International Symposium on Computer-Based Medical Systems. IEEE, 2008. p. 488-493.
MORAES, M. F. Requisitos de qualidade e segurança para prontuários do paciente. Informação em Pauta, v. 3, p. 141-160, 2018. Disponível em: http://www.brapci.inf.br/index.php/res/v/106556. Acesso em: 02 setembro 2020.
MORANDI, M. I. W. M.; CAMARGO, L. F. R. Revisão Sistemática de Literatura. In: Design Science Research: Método de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman, 2015. p. 181.
MOULTON, B. D.; CHACZKO, Z. C.; KARATOVIC, Mark. Data fusion and aggregation methods for pre-processing ambulatory monitoring and remote sensor data for upload to personal electronic health records. International Journal of Digital Content Technology a..., 2009.
ORFANIDIS, Leonidas; BAMIDIS, Panagiotis D.; EAGLESTONE, Barry. Data quality issues in electronic health records: an adaptation framework for the Greek health system. Health informatics journal, v. 10, n. 1, p. 23-36, 2004.
POMPILIO, Antonio Pompilio Junior; ERMETICE, Edson. Indicadores de uso do prontuário eletrônico do paciente. Journal of Health Informatics, v. 3, n. 1, 2011.
REDMAN, T. C. Data quality for the information age. Norwood, Mass.: Artech House. 1996.
SANT’ANA, Ricardo César Gonçalves. Ciclo de vida dos dados: uma perspectiva a partir da ciência da informação. Informação & Informação, [S.l.], v. 21, n. 2, p. 116–142, dez. 2016. ISSN 1981-8920. Disponível em: <http://www.uel.br/revistas/uel/index.php/informacao/article/view/27940>. Acesso em: 17 abr. 2021. doi:http://dx.doi.org/10.5433/1981-8920.2016v21n2p116.
SANT'ANA, R.C.G. Campo Informacional Resultante da Interação de Ciclos de Vida dos Dados. In: DIAS, G.; FREIRE, B. (org). Dados Científicos: perspectivas e desafios. Editora UFPB - João Pessoa. 2019 p.5-19
SCHOLTE, Marijn et al. Data extraction from electronic health records (EHRs) for quality measurement of the physical therapy process: comparison between EHR data and survey data. BMC medical informatics and decision making, v. 16, n. 1, p. 141, 2016.
TANG, Paul C. et al. Comparison of methodologies for calculating quality measures based on administrative data versus clinical data from an electronic health record system: implications for performance measures. Journal of the American Medical Informatics Association, v. 14, n. 1, p. 10-15, 2007.
THIRU, Krish; HASSEY, Alan; SULLIVAN, Frank. Systematic review of scope and quality of electronic patient record data in primary care. Bmj, v. 326, n. 7398, p. 1070, 2003.
VIMALACHANDRAN, Pasupathy et al. Ensuring data integrity in electronic health records: a quality health care implication. In: 2016 International Conference on Orange Technologies (ICOT). IEEE, 2016. p. 20-27.
WAND, Yair; WANG, Richard Y. Anchoring data quality dimensions in ontological foundations. Communications of the ACM, v. 39, n. 11, p. 86-95, 1996.
WANG, R. Y.; STRONG, D. M. Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems, v. 12, n. 4, p. 5-33, 1996.
WEISKOPF, Nicole Gray; WENG, Chunhua. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, v. 20, n. 1, p. 144-151, 2013.
ZHENG, Yi; HU, Xiangpei. Healthcare predictive analytics for disease progression: a longitudinal data fusion approach. Journal of Intelligent Information Systems, v. 55, p. 351-369, 2020.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Informação & Informação
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.
O conteúdo dos textos e a citação e uso de imagens submetidas são de inteira responsabilidade dos autores.
Em todas as citações posteriores, deverá ser consignada a fonte original de publicação, no caso a Informação & Informação.