INTERSECTION BETWEEN MACHINE-ACTIONABLE DATA MANAGEMENT PLANS AND METRICS FOR FAIR PRINCIPLES

Authors

DOI:

https://doi.org/10.5433/1981-8920.2024v29n4p147

Keywords:

Data Management, FAIR Principles, maDMPs, Open Science

Abstract

Objective: This study seeks to analyze intersections between Machine Actionable Data Management Plans (maDMPs) and the FAIR Principles, investigating how these two approaches can be applied to improve the management and reuse of scientific data. Methodology: The research performed a relational analysis between the ten principles of maDMPs, proposed by Miksa et al. (2019), and the metrics of the FAIRsFAIR Data Object Assessment Metrics project (v.0.4), focusing on how the FAIR principles can be implemented in data management workflows that use machine actionable management plans. Results: The study identified that all 10 maDMPs principles analyzed are aligned with the FAIR metrics studied. Conclusions: maDMPs have the potential to become a central tool in the scientific ecosystem, facilitating interoperability and the use of data in multiple contexts. The alignment between maDMP and FAIR principles can increase efficiency in data management, promote automated information sharing between systems and reduce the bureaucratic burden for researchers, while improving the quality of the data generated. However, their widespread adoption, in addition to the technological and technical requirements needed by all those involved, requires institutional, regulatory and cultural change incentives.

Downloads

Download data is not yet available.

Author Biographies

Laura Vilela Rodrigues Rezende, Universidade Federal de Goiás - UFG

PhD in Information Science from the Universidade de Brasília (UnB). Professor at the Universidade Federal de Goiás (UFG), Goiania, Brasil.

Sandra de Albuquerque Siebra, Universidade Federal de Pernambuco - UFPB

PhD in Computer Science from the Universidade Federal de Pernambuco (UFPE). Professor at the Universidade Federal de Pernambuco (UFPE), Recife, Brasil.

Fabiano Couto Corrêa da Silva, Universidade Federal do Rio Grande do Sul - UFRGS

PhD in Information and Documentation Sociedad Conocimiento from the Universitat de Barcelona (UB). Professor at the Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil.

Denise Oliveira de Araújo, Universidade de Brasília - UnB

Master in Information Science from the Universidade de Brasília (UnB), Brasília, Brasil.

Alexandre Faria de Oliveira, Instituto Brasileiro de Informação em Ciência e Tecnologia - IBICT

Master in Strategic Management of Organizations from the Instituto de Educação Superior de Brasília (IESB). Coordinator of Governance in Information and Communication Technology at the Instituto Brasileiro de Informação em Ciência e Tecnologia (IBICT), Brasília, Brasil.

References

DEVARAJU, A. et al. FAIRsFAIR Data Object Assessment Metrics (0.5). [s. l.]: Zenodo, p. 1-28, 2022. Disponível em: https://zenodo.org/records/6461229. Acesso em: 25 nov. 2024.

MICHENER, W. K. Ten simple rules for creating a good data management plan. PLoS Computational Biology, [s. l.], v. 11, n. 10, p. e1004525, 2015. Disponível em: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004525. Acesso em: 25 nov. 2024. DOI: https://doi.org/10.1371/journal.pcbi.1004525

MIKSA, T.; SIMMS, S.; MIETCHEN, D.; JONES, S. Ten principles for machine- actionable data management plans. PLoS Computational Biology, [s. l.], v. 15, n. 3, p. e1006750, 2019. Disponível em: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006750. Acesso em: 25 nov. 2024. DOI: https://doi.org/10.1371/journal.pcbi.1006750

MIKSA, T. et al. Salzburg Manifesto on machine actionable Data Management Plans (maDMOs). Zenodo, p. 1-2, 2024. Disponível em: https://zenodo.org/records/10658522. Acesso em: 25 nov. 2024.

NETSCHER, S. et al. Data Management Planning across Disciplines and Infrastructures. Introduction to the Special Collection. Data Science Journal, [s. l.]: Ubiquity Press, Ltd., 2024. Disponível em: https://datascience.codata.org/articles/10.5334/dsj-2024-016. Acesso em: 25 nov. 2024. DOI: https://doi.org/10.5334/dsj-2024-016

RESEARCH DATA MATURITY MODEL WORKING GROUP. FAIR Data Maturity Model: specification and guidelines. Research Data Alliance, p. 1-45, 2020. Disponível em: https://zenodo.org/records/3909563#.YGRNnq8za70. Acesso em: 25 nov. 2024.

SIMMS, S.; JONES, S.; MIETCHEN, D.; MIKSA, T. Machine-actionable data management plans (maDMPs). Research Ideas and Outcomes, [s. l.], v. 3, p. e13086, 2017. Disponível em: https://riojournal.com/articles.php?id=13086. Acesso em: 25 nov. 2024. DOI: https://doi.org/10.3897/rio.3.e13086

UNESCO. Recomendação da UNESCO sobre Ciência Aberta. [s. l]: Unesco, 2022. Disponível em: https://unesdoc.unesco.org/ark:/48223/pf0000379949_por. Acesso em: 25 nov. 2024.

WILKINSON, M. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, [s. l.], v. 3, p. 160018, 2016. Disponível em: https://www.nature.com/articles/sdata201618. Acesso em: 25 nov. 2024.

Published

2024-12-31

How to Cite

Rezende, L. V. R., Siebra, S. de A., Silva, F. C. C. da, Araújo, D. O. de, & Oliveira, A. F. de. (2024). INTERSECTION BETWEEN MACHINE-ACTIONABLE DATA MANAGEMENT PLANS AND METRICS FOR FAIR PRINCIPLES. Informação & Informação, 29(4), 147–170. https://doi.org/10.5433/1981-8920.2024v29n4p147