INTERSECTION BETWEEN MACHINE-ACTIONABLE DATA MANAGEMENT PLANS AND METRICS FOR FAIR PRINCIPLES
DOI:
https://doi.org/10.5433/1981-8920.2024v29n4p147Keywords:
Data Management, FAIR Principles, maDMPs, Open ScienceAbstract
Objective: This study seeks to analyze intersections between Machine Actionable Data Management Plans (maDMPs) and the FAIR Principles, investigating how these two approaches can be applied to improve the management and reuse of scientific data. Methodology: The research performed a relational analysis between the ten principles of maDMPs, proposed by Miksa et al. (2019), and the metrics of the FAIRsFAIR Data Object Assessment Metrics project (v.0.4), focusing on how the FAIR principles can be implemented in data management workflows that use machine actionable management plans. Results: The study identified that all 10 maDMPs principles analyzed are aligned with the FAIR metrics studied. Conclusions: maDMPs have the potential to become a central tool in the scientific ecosystem, facilitating interoperability and the use of data in multiple contexts. The alignment between maDMP and FAIR principles can increase efficiency in data management, promote automated information sharing between systems and reduce the bureaucratic burden for researchers, while improving the quality of the data generated. However, their widespread adoption, in addition to the technological and technical requirements needed by all those involved, requires institutional, regulatory and cultural change incentives.
Downloads
References
DEVARAJU, A.; HUBER, R.; MOKRANE, M.; HERTERICH, P.; CEPINSKAS, L.; DE VRIES, J.; L'HOURS, H.; DAVIDSON, J.; WHYTE, A. FAIRsFAIR Data Object Assessment Metrics (0.5). [S. l.]: Zenodo, 2022. DOI: https://doi.org/10.5281/zenodo.6461229 .
MICHENER, W. K. Ten simple rules for creating a good data management plan. PLoS Computational Biology, [s. l.], v. 11, n. 10, p. e1004525, 2015. DOI: https://doi.org/10.1371/journal.pcbi.1004525.
MIKSA, T.; SIMMS, S.; MIETCHEN, D.; JONES, S. Ten principles for machine-actionable data management plans. (Francis Ouellette, org.). PLoS Computational Biology, [s. l.], v. 15, n. 3, p. e1006750, 2019. DOI: http://dx.doi.org/10.1371/journal.pcbi.1006750.
MIKSA, T.; CHODACKI, J..; SUCHÁNEK, M.; PRAETZELLIS, M.; PAPADOPOULOU, E.; JACQUEMOT, M.-C.; KEVIN, A. Salzburg Manifesto on machine actionable Data Management Plans. [Salzburgo, AT: RDA], 2024. DOI: https://doi.org/10.5281/zenodo.10658522.
NETSCHER, S.; HAUSEN, D.; WILEY, C.; ANDERS, I.; ASHLEY, K.; HENZEN, C.; JONES, S.; MIKSA, T.; PRAETZELLIS, M. Data Management Planning across Disciplines and Infrastructures. Introduction to the Special Collection. Data Science Journal, [S. l.]: Ubiquity Press, Ltd., 2024. DOI 10.5334/dsj-2024-016. Disponível em: http://dx.doi.org/10.5334/dsj-2024-016.
RESEARCH DATA ALLIANCE (RDA). FAIR Data Maturity Model: specification and guidelines. https://www.rd-alliance.org/group_output/fair-data-maturity-model-specification-and-guidelines/.
SIMMS, S.: JONES, S.; MIETCHEN, D.; MIKSA, T. Machine-actionable data management plans (maDMPs). Research Ideas and Outcomes, [s. l.], v. 3, p. e13086, 2017. DOI: https://doi.org/10.3897/rio.3.e13086 .
UNESCO. Recomendação da UNESCO sobre Ciência Aberta. [S. l]: Unesco, 2022. DOI: https://doi.org/10.54677/XFFX3334.
WILKINSON, M. D.; DUMONTIER, M.; AALBERSBERG, I. J.; APPLETON, G.; AXTON, M.; BAAK, A.; BLOMBERG, N.; BOITEN, J.; SANTOS, L. B. S.; BOURNE, P. E.; BOUWMAN, J.; BROOKES, A. J.; CLARK, T.; CROSAS, M.; DILLO, I.; DUMON, O.; EDMUNDS, S.; EVELO, C. T.; FINKERS, R.; HOEN, P. A.C ’T; HOOFT, R; KUHN, T; KOK, R.; KOK, J.; LUSHER, S. J.;. MARTONE, M. E.; MONS, A; PACKER, A. L.; PERSSON, B.; ROCCA-SERRA, P.; ROOS, M.; VAN SCHAIK, R.; SANSONE, S; SCHULTES, E; SENGSTAG, T; SLATER, T; STRAWN, G; SWERTZ, M. A.; THOMPSON, M; VAN DER LEI, J.; VAN MULLIGEN, E.; VELTEROP, J.; WAAGMEESTER, A.; WITTENBURG,P.; WOLSTENCROFT, K; ZHAO, J.; MONS, B. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, [s. l.], v. 3, p. 160018, 2016. DOI: http://dx.doi.org/10.1038/sdata.2016.18.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Laura Vilela Rodrigues Rezende, Sandra de Albuquerque Siebra, Fabiano Couto Corrêa da Silva, Denise Oliveira de Araújo, Alexandre Faria de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.
O conteúdo dos textos e a citação e uso de imagens submetidas são de inteira responsabilidade dos autores.
Em todas as citações posteriores, deverá ser consignada a fonte original de publicação, no caso a Informação & Informação.