Surveying fractures in riverbeds using UAVs (Unmanned Aerial Vehicles)

Authors

DOI:

https://doi.org/10.5433/2447-1747.2024v33n2p9

Keywords:

UAV; Flight height; Bedrock river; Fractures.

Abstract

Using UAVs for high-resolution mosaic production has become a common practice across various applications. This study focuses on selecting sections of rocky riverbeds to calibrate flight height parameters that optimize the observation of rock fractures. Basic statistics were employed to validate the differences between each selected height regarding the density and intensity of fracturing. It was observed that a height of 20 m allows for optimal visualization and a greater number of observable fractures. However, heights of 50 m and 100 m, while allowing for the observation of fewer fractures, exhibit small average differences (yet statistically significant) when compared to each other. Flight conditions, such as surveying time, may either enhance or minimize these differences.

Author Biographies

Diego Moraes Flores, Universidade Federal da Integração Latino-Americana - Campus Foz do Iguaçu (PR).

Doutor em Geografia Física pela Universidade de São Paulo – USP. Professor/Pesquisador efetivo da UNILA - Universidade Federal da Integração Latino-Americana.

 

Adalto Gonçalves Lima, https://orcid.org/0000-0002-6054-702X

Doutor em Geografia pela Universidade Federal de Santa Catarina (UFSC). Professor/pesquisador efetivo da Universidade Estadual do Centro-Oeste – Guarapuava (PR).

References

ALVES-JÚNIOR, Leomar Rufino; CÔRTES, João Batista Ramos; FERREIRA, Manuel Eduardo; SILVA, Janete Rêgo. Validação de ortomosaicos e modelos digitais de terreno utilizando fotografias obtidas com câmera digital não métrica acoplada a um vant. Revista Brasileira de Cartografia, [S. l.], v. 67, n. 7, p. 1453–1466, 2019. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/49198. Acesso em: 10 jun. 2024.

BEAUMONT, Christopher; FULLSACK, Philippe; HAMILTON, Juliet. Erosional control of active compressional orogens. In: McClay, Kevin Richard (ed). Thrust Tectonics. Springer, Dordrecht. 1992. p.1-18. Disponível em: https://ethz.ch/content/dam/ethz/special-interest/baug/igp/igp-dam/documents/PhD_Theses/105.pdf. Acesso em: 10 jun. 2024.

CHATANANTAVET, Phairot; PARKER, Gary. Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion. Journal of Geophysical Research, 114, 2009. p.1-22. Disponível em: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008JF001044. Acesso em: 10 jun. 2024.

CHOI, Inhyeok; DONGYOUP, Kwak. Optimizing Terrain Classification Methods for the Determination of Bedrock Depth and the Average Shear Wave Velocity of Soil. Remote Sensing 16, no. 2: 233, p. 2-24, 2024. Disponível em: https://www.mdpi.com/2072-4292/16/2/233. Acesso em: 10 jun. 2024.

DJI. Mavic Pro User Manual V1.6_PT. 2017. Disponível em: https://dl.djicdn.com/downloads/mavic/20170630/Mavic+Pro+User+Manual+V1.6_PT.pdf. Acesso em: 10 jun. 2024.

EISENBEISS, Henri. UAV Photogrammetry. Tese de Doutorado em Ciências, Universidade de Tecnologia de Dresden, Alemanha, 2009. Disponível em: https://ethz.ch/content/dam/ethz/special-interest/baug/igp/igp-dam/documents/PhD_Theses/105.pdf. Acesso em: 10 jun. 2024.

FIGUEIREDO, Evandro Orfanó; FIGUEIREDO, Symone Maria de Melo. Planos de Voo Semiautônomos para Fotogrametria com Aeronaves Remotamente Pilotadas de Classe 3. CIRCULAR TÉCNICA 75, Rio Branco, AC Novembro, EMBRAPA, 2018. p.1-56. Disponível em: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/187874/1/26750.pdf> Acesso em: 17 abr. 2024.

HALLET, Bernard. Glacial quarrying: a simple theoretical model. Annals of Glaciology, v.22, 1996. p.1-8. Disponível em: https://www.cambridge.org/core/journals/annals-of-glaciology/article/glacial-quarrying-a-simple-theoretical-model/16A34743DFF24D6B5D1F4588569FDF8E. Acesso em: 10 jun. 2024.

KIM, Ju-Yong; HOEY, Trevor Bryan; BISHOP, Paul. Erosion processes in bedrock river - A review with special emphasize on numerical modelling. Korea Journal of Quaternary Research, 20, 2006, p.11-29. Disponível em: https://koreascience.kr/article/JAKO200634515186285.page. Acesso em: 10 jun. 2024.

LAMB, Michael Peter; FINNEGAN, Noah James; SCHEINGROSS, Joel Stephen; SKLAR, Leonard S. New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory. Geomorphology, 244, p. 33-55. 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0169555X15001294. Acesso em: 10 jun. 2024.

LIMA, Adalto Gonçalves; PELEGRINA, Marcos Aurélio; PONTAROLO, Murilo. Fracture variability in basalts and its effect on river erosion: a case study in the Paraná volcanic province. Earth Science Research Journal. 25(1), p.13-19, 2021. Disponível em: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-61902021000100013. Acesso em: 10 jun. 2024.

MAULDON, Matthew Bruce; DUNNE, William Michael; ROHRBAUGH JR, Michael Bruce. Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J. Structural Geology, 23. p.247-258, 2001. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0191814100000948. Acesso em: 10 jun. 2024.

MINEROPAR. O Grupo Serra Geral no estado do Paraná: mapeamento geológico na escala de 1:250.000 (I e II). Curitiba: Mineropar, 2013. Disponível em: https://www.iat.pr.gov.br/Pagina/Publicacoes-para-download. Acesso em: 7 maio 2024.

MOLNAR, Peter; ANDERSON, Robert Stephen; ANDERSON, Suzanne Prestrud. Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research: Earth Surface, 112, p.1–12, 2007. Disponível em: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JF000433. Acesso em 10 jun. 2024.

MONTGOMERY, David. Process domains and the river continuum. Journal of the American Water Resources Association, 35. p. 397–410, 1999. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.1999.tb03598.x. Acesso em: 10 jun. 2024.

PALMSTRÖM, Arild. Measurement and characterization of rock mass jointing. In: SHARMA, Vishnu Mohan; SAXENA, Krishna Raju. In-situ characterization of rocks. Rotherdan: Balkema, 2001. p.49-97. Disponível em: https://rockmass.net/ap/69_Palmstrom_on_Jointing_measurements.pdf . Acesso em: 10 jun. 2024.

SALVINI, Roberto; MASTROROCCO, Gianluca; SEDDAIU, Marcello; ROSSI, Davide; VANNESCHI, Claudio. The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy): photogrammetry and discrete fracture network modelling. Geomatics, Natural Hazards and Risk, 8(1), p.34–52, 2017. Disponível em: https://www.tandfonline.com/doi/full/10.1080/19475705.2016.1199053. Acesso em: 10 jun. 2024.

SCOTT, David Natan; WOHL, Ellen Elizabeth. Bedrock fracture influences on geomorphic process and form across process domains and scales. Earth Surface Process. Landforms, 44, p.27–45, 2019. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/esp.4473. Acesso em: 10 jun. 2024.

SOUSA, Hélio Lopes. Sensoriamento Remoto com VANTs: uma nova possibilidade para a aquisição de geoinformações. Revista. Brasileira de Geomática, Curitiba, v. 5, n. 3, p. 326-342, jul/set. 2017. Disponível em: https://periodicos.utfpr.edu.br/rbgeo. Acesso em: 15 maio 2024.

WAGER, Laurence Robert. The Arun river drainage pattern and the rise of the Himalaya. Geographical Journal, 89, p. 239–250, 1937. Disponível em: https://www.jstor.org/stable/1785796. Acesso em: 10 jun. 2024.

WHIPPLE, Kelin; HANCOCK, Gregory Scott; ANDERSON, Robert Stephen. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Bulletin of the Geological Society of America, 112(3), p.490-503, 2000a. Disponível em: https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/112/3/490/183620/River-incision-into-bedrock-Mechanics-and-relative?redirectedFrom=fulltext. Acesso em: 10 jun. 2024.

WHIPPLE, Kelin; SNYDER, Neil Patrick; DOLLENMAYER, Kevin. Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousands Smokes, Alaska. Geology, 28(9), p.835-838, 2000b. Disponível em: https://pubs.geoscienceworld.org/gsa/geology/article-abstract/28/9/835/188909/Rates-and-processes-of-bedrock-incision-by-the. Acesso em: 10 jun. 2024.

WHIPPLE, Kelin. Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32. p.151-185, 2004. Disponível em: https://www.annualreviews.org/content/journals/10.1146/annurev.earth.32.101802.120356. Acesso em: 10 jun. 2024.

WOBUS, Cameron; WHIPPLE, Kelin; KIRBY, Eric; SNYDER, Neil; JOHNSON, Joel; SPYROPOLOU, Krystala; CROSBY, Benjamin Taylor; SHEEHAN, David. Tectonics from topography: Procedures, promise and pitfalls, in Tectonics, Climate and Landscape Evolution. edited by Sean Douglas Willett, et al., Geological Society of America Special Papers, 398, p.55–74, 2006. Disponível em: https://pubs.geoscienceworld.org/gsa/books/book/569/chapter-abstract/3802975/Tectonics-from-topography-Procedures-promise-and?redirectedFrom=fulltext. Acesso em: 10 jun. 2024.

Published

2024-06-30

How to Cite

Flores, D. M., & Lima, A. G. (2024). Surveying fractures in riverbeds using UAVs (Unmanned Aerial Vehicles). GEOGRAFIA (Londrina), 33(2), 9–29. https://doi.org/10.5433/2447-1747.2024v33n2p9